Posted on

Electrolytic water splitting for binders in building material

The oceans are rich in magnesium resources, which that could be used in the production of construction materials. Sorel cement (magnesium cement), for example, can be used in interior building applications as an alternative to screed. Extracting magnesium from seawater traditionally requires a highly energy-intensive calcination process to isolate magnesium oxide (magnesia). The innovative method of electrolysis-controlled water splitting can bypass this process, significantly reducing CO₂ emissions.

To obtain the precursor of magnesia, magnesium hydroxide (Mg[OH]₂), an alkaline solution must be produced. While previous research has investigated electrochemical methods for hydroxide production, few studies have combined efficient alkali synthesis with the direct precipitation of magnesium hydroxide to make magnesia for low-carbon cement. This critical knowledge gap in optimizing energy and material efficiency has now been addressed.

A new study led by a research team at Columbia University used electrochemical water splitting at low voltages (1.6–2.0 V). Hydroxide ions (OH⁻) were generated from seawater through hydrogen production. This led to the direct precipitation of magnesium hydroxide. The findings were recently published in the journal Desalination. This new approach reduces energy intensity by 52–78%. Normally, the energy consumption per ton of MgO is 0.56 MWh. With the new method, carbon emissions per ton of magnesia can be reduced by up to 0.41 tons of CO₂.

To further improve production efficiency, the nanostructure of magnesium hydroxide was optimized using urea as a crosslinker. This enhanced its reactivity, porosity, and specific surface area. At an optimal urea concentration of 0.2 mol/L, magnesia particles exhibited excellent binding properties. The researchers attributed this to the sealing effects of rosette-shaped dypingite and rod-shaped nesquehonite. According to the authors, the formation of these minerals facilitates CO₂ incorporation and enhances carbonate hardening.

Advances in symmetric electrochemical systems, as demonstrated in this study, result in up to a 78% reduction in energy demand for the production of alkaline solutions. This gives these methods the potential to serve as viable alternatives to traditional processes. The further optimization of electrodes and electrolytes represents a pioneering approach to the carbon-neutral production of building materials and alkalis. Additionally, this method highlights how construction material manufacturing can efficiently lead to large-scale CO₂ mineralization. As a result, the greenhouse gas can be permanently removed from the atmosphere.

The industrial scaling of electrochemical alkali production can reduce operating costs, minimize environmental impact, and improve the properties of low-carbon building materials. The economic aspects of this manufacturing process are particularly noteworthy, as the demand for efficient binding materials continues to grow.

At Frontis Energy, we are committed to promoting sustainable and economically viable energy solutions. Research like this provides valuable insights and innovations to support such sustainable advancements.

Image: Pixabay

Posted on

From waste heat to ultrapure water: A new technology transforming renewable hydrogen

Hydrogen (H₂), produced using renewable energy, has emerged as a possible alternative to fossil fuel. This versatile molecule can serve as an energy carrier, an efficient storage solution, and a sustainable feedstock for transportation, chemical processing, and energy systems worldwide.

Unlike fossil fuels, hydrogen produces no harmful emissions when used. It can be generated using electrolyzers running on renewable energy and abundant water as feedstock. It then becomes a renewable and sustainable energy source, reducing reliance on depleting fossil fuel reserves, helping combat climate change. Consequently, hydrogen production has become a key priority on the political agenda of numerous countries.

However, the water used in electrolyzers must be ultrapure in order to protect the electrodes of electrolyzers from poisoning and avoid chloride oxidation to chlorine. Abundant seawater adds several challenges when directly fed to electrolyzer plants for hydrogen production, making highly pure water, specifically ultrapure water, an expensive necessity. Ultrapure water is produced in a series of steps, including pretreatment to remove suspended solids and desalination to eliminate salts, organics, and colloidal particles. Polishing techniques such as deionization, degasification, and ultraviolet treatment are then used to achieve the required quality. Among these processes, desalination is particularly critical for removing most impurities.

Reverse osmosis, especially seawater reverse osmosis, is a widely used desalination technology but has notable drawbacks, such as requiring high-pressure operation (high energy consumption), intensive pretreatment, and producing concentrated brine, which can harm marine ecosystems when discharged. Membrane distillation has gained attention as an alternative for producing high-quality water and supporting recovery applications. It operates at lower temperatures and has the ability to utilize waste heat.

Membrane distillation is a thermal separation process where a vapor pressure difference across a hydrophobic membrane causes liquid particles to phase change and pass through as gas. Operating at ambient pressure and utilizing low-temperature heat sources (<90 °C), membrane distillation offers significant advantages. However, research on membrane distillation as a viable alternative to reverse osmosis for ultrapure water production remains limited, particularly in areas such as module design and techno-economic analysis.

A group of researchers at the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany, has explored the potential of membrane distillation as a cost- and energy-efficient alternative to reverse osmosis for producing ultrapure water for proton exchange membrane (PEM) electrolyzers. The findings were recently published in the Desalination Journal. They introduced membrane distillation as a possible alternative to reverse osmosis for ultrapure water production. But here is the twist: the membrane distillation system ingeniously taps into waste heat from a 5 MW proton exchange membrane electrolyzer, transforming what would typically be an efficiency liability into an asset for sustainability. So far, their results are impressive—membrane distillation not only produces exceptional distillate (<3 μS/cm) but does so at a cost ranging from €2.33 to €2.85 per ton of distillate, compared to reverse osmosis’s €2.80 to €5.51. Using membrane distillation, seawater desalination could be 50% or more cheaper.

Economic analyses highlight that membrane distillation’s cost-effectiveness is driven by its low electrical energy requirements and optimized short-channel module design. Its impressive energy efficiency, enabled using low-grade thermal energy, establishes membrane distillation as a highly versatile and environmentally friendly solution that aligns seamlessly with the vision for renewable hydrogen production. This study positions membrane distillation as more than just an alternative to reverse osmosis: it is a smarter and greener approach to ultrapure water production.

Their findings have the potential to reshape the industrial approach to ultrapure water production. By demonstrating an efficient use of waste heat and providing a more economical solution, it offers industries a pathway to lower operational costs while advancing sustainability. This aligns particularly well with sectors striving for greener operations, such as renewable hydrogen production and other energy-intensive applications. Moreover, the adoption of membrane distillation could catalyze innovation in system design and integration, encouraging industries to optimize processes and reduce dependence on traditional, energy-intensive methods. This shift can contribute to broader sustainability goals and improve the economic feasibility of renewable energy initiatives.

At Frontis Energy, we are committed to advancing sustainable and green energy solutions by embracing innovative technologies like membrane distillation, bringing us closer to a sustainable future.

Image: Pixabay

Posted on

Unlocking the Potential of Conducting Polymers for Sustainable Water Treatment and Energy Solutions

Carbon based materials have a broad range of applications such as energy storage and conversion, electronics, nanotechnology, water purification, and catalysis. They are made of an element which is available everywhere.

In recent times, the electrochemical features of carbon-based electrodes are being enhanced by using conducting polymers. Carbon cloth, woven from carbon microfibers, serves as a promising carbon-based electrode, which acts as a durable and cost-effective medium for facilitating electrochemical reactions that degrade pollutants and improve water quality. These electrodes, notable for their mechanical flexibility, strength, and cost-effectiveness, are employed in processes such as electrochemical oxidation, microbial fuel cells, and other advanced wastewater treatment technologies.

Due to a few limitations of pristine carbon cloth electrodes such as low specific capacitance and limited wettability associated with its inherent hydrophobicity, scientists conduct research to improve the modern electrodes. For instance, since wettability is crucial for for immersing the electrode surface in liquid and ensuring interaction with contaminants, enhancing it is always beneficial for the process. Improving the performance of carbon cloth electrodes could lead to more efficient treatment, faster reaction times, and better overall performance.

A research group at San Diego State University undertook the task of addressing these limitations by making conformal conducting polymer films on carbon fibers via oxidative chemical vapor deposition (oCVD) method. They recently published their results in the Advanced Material Interface Journal. With antimony pentachloride (SbCl5) as the oxidant, they developed a highly uniform coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on three-dimensional porous fibers. The oCVD technique ensures uniform coatings while preserving the geometric and functional properties of the carbon cloth, making it a promising approach for enhancing electrochemical performance.

The PEDOT-coated carbon cloth electrodes achieved a remarkable improvement in specific capacitance and pseudocapacitance compared to pristine carbon cloth. Depending on the deposition temperature, the oCVD PEDOT-coated electrodes showed a 1.5- to 2.3-fold enhancement in specific capacitance. Notably, the electrode fabricated at a deposition temperature of 80 °C exhibited the highest specific capacitance and superior electrochemical performance. Adjusting the deposition temperature to optimize performance can help tailor carbon cloth electrodes for specific wastewater treatment needs.

The investigation underscores the effectiveness of the oCVD method in addressing the limitations of carbon cloth electrodes and expanding their potential applications in wastewater treatment and electrochemical energy storage devices. Furthermore, the researchers showed that PEDOT-coated carbon cloth can be applied as supercapacitors, where flexibility and high capacitance are critical. It should be noted that the study not only showcases significant advancements in material design but also open new avenues for optimizing electrode performance for diverse applications.

Overall, the findings emphasize the growing potential of advanced electrode technologies in addressing industrial challenges. By improving the functionality of carbon-based electrodes through novel material coatings, industries can achieve more efficient and tailored solutions for both wastewater treatment and energy storage. The ability to fine-tune electrode properties to meet specific requirements offers a pathway toward the development of highly efective and cost-efficient technologies, which could be a game-changer for sectors focused on sustainability and resource management. As these innovations continue to evolve, they have the potential to significantly improve operational efficiency and environmental impact across various industries. For example, in wastewater treatment, electrochemical processes such as electrocoagulation, electrooxidation, or electroreduction are often used to remove contaminants.

At Frontis Energy, we believe that improvements and customization can aid in designing electrodes tailored to specific contaminants or types of wastewater.

Image: Pixabay