Posted on

A Brief Account of Wind Energy in the United States, Canada, and the European Union

Wind energy is short for the conversion of energy captured from wind to electrical or mechanical energy. Wind power turbines produce electrical energy and windmills produce mechanical energy. Other forms for wind energy conversion are wind pumps which use wind energy to pump water or sails which drive sail boats.

The cheapest US energy prices by source and county, Source: Energy Institute, University of Texas Austin

Since its first use on sail boats, wind energy is wide spread. Windmills have been used for more than 2,000 years as source of mechanical energy. The Scotsman James Blythe was the first who demonstrated the transformation of wind energy into electrical energy. As wind energy is a renewable source of energy, electrical energy generated by wind turbines is a clean and sustainable form of energy. Wind energy is often also cheaper than natural gas, for example throughout the entire American Midwest, as shown by the Energy Institute of University of Texas, Austin. It is therefore not surprising that wind energy is one of the fastest growing markets in the renewable energy sector worldwide. In 2015, 38% of all renewable energy in the United States and the European Union was generated by wind turbines.

Wind and solar energy production in the US and Canada in 2015. Sources: EIA, Statistics Canada

More efficient than single wind turbines is the use of wind parks where clusters of large turbines constantly generate electrical power. There are two kinds of wind parks, on-shore and off-shore wind parks. Off-shore wind parks are often more expensive but do not use valuable farmland as it is often the case for on-shore wind parks. However, wind parks on farmland can be a valuable addition for farmers seeking an extra income.

Wind and solar energy production in the European Union and the Euro-zone in 2015. WSH is the fraction of renewable energy of the European energy market. “Hydro” is the fraction of hydro power. Source, Eurostat
Posted on

Decarbonizing Planet Earth – Nuclear vs. Renewable

Adding to the controversial scientific debate whether renewable or nuclear energy decarbonize the atmosphere quicker, Lovins et al of the Rocky Mountain Institute in Basalt, Colorado, argue that renewable energy is doing a better job. In their recent study, published in Energy Research & Social Science, they analyzed 17 years of recent energy resource development worldwide to support their conclusion. Their paper stands in contrast to numerous previous studies, including a 2016 report published by Cao et al in Science, claiming that nuclear power is better suited for fast decarbonization. However, the nuclear waste problem still remains unresolved.

Posted on

Starting up Power-to-Gas Reactors

In their paper “Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes“, which was recently published in Applied and Environmental Microbiology, Saheb-Alam et al. teach us how to start-up bio-electrical systems for CO2 conversion to methane gas. They compared pre-acclimated with pristine electrodes and found that there is no difference in start-up time. Their findings stand in contrast to previous observations where pre-acclimation has indeed helped to improve reactor performance. For example, LaBarge et al. found that electrodes acclimated with methane-forming microbes, called Methanobacterium, do reduce start-up time.