Electromicrobiology

Derek R. Lovley

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003; email: dlovley@microbio.umass.edu

Keywords

Geobacter, Shewanella, microbial nanowires, microbial fuel cells, microbial electrosynthesis, bioelectronics

Abstract

Electromicrobiology deals with the interactions between microorganisms and electronic devices and with the novel electrical properties of microorganisms. A diversity of microorganisms can donate electrons to, or accept electrons from, electrodes without the addition of artificial electron shuttles. However, the mechanisms for microbe-electrode electron exchange have been seriously studied in only a few microorganisms. Shewanella oneidensis interacts with electrodes primarily via flavins that function as soluble electron shuttles. Geobacter sulfurreducens makes direct electrical contacts with electrodes via outer-surface, c-type cytochromes. G. sulfurreducens is also capable of long-range electron transport along pili, known as microbial nanowires, that have metallic-like conductivity similar to that previously described in synthetic conducting polymers. Pili networks confer conductivity to G. sulfurreducens biofilms, which function as a conducting polymer, with supercapacitor and transistor functionalities. Conductive microorganisms and/or their nanowires have a number of potential practical applications, but additional basic research will be necessary for rational optimization.
Electromicrobiology: the study of microbial electron exchange with external electronic devices or the investigation of the electronic properties of microorganisms

Bioelectronics: technology incorporating electronics in biological applications or developing electronic devices from biological components or electronic components that mimic biological materials

Microbial fuel cell: device for harvesting electricity from organic matter in which microorganisms are the catalyst for oxidizing the organic matter

Electromicrobiology is the study of microbial electron exchange with external electronic devices and functionalities of microorganisms that have the potential to contribute to the emerging field of bioelectronics. A wide diversity of microorganisms have the ability to exchange electrons with electrodes, which contribute to a broad range of practical applications (4, 30, 58–60, 62, 63, 101, 102, 108). Furthermore, some microorganisms have surprising electronic characteristics. For example, biofilms of Geobacter species have conductivities that rival those of conductive polymers (74), and can function as supercapacitors (71) or transistors (74). The pili of these organisms are capable of long-range (>1 cm) electron transport via a metallic-like conductivity, not previously observed in a biological material (74).

Many of the recent advances in electromicrobiology have arisen from the study of microbial fuel cells, devices initially designed for harvesting electricity from organic matter (58, 59, 101). Difficulties in scaling up microbial fuel cells for extracting energy on an industrial scale have greatly limited their short-term practical use for current production to niche applications, such as harvesting organic matter from aquatic sediments to power electronic monitoring devices (65). Some of the most attractive practical applications of the microbial fuel cell concept are those in which there is no need to harvest current. These include monitoring rates of microbial metabolism in subsurface environments (137) and providing electrodes as an electron acceptor to stimulate the degradation of organic contaminants in sediments (63, 142). Another promising application of the ability of microorganisms to transfer electrons to electrodes is the potential for balancing electron flow within microbial cells by removing excess electrons in order to promote the synthesis of desired products (29).

In a similar manner, new potential applications for electron flow in the reverse direction, i.e., from electrodes to cells, are rapidly emerging (64, 102, 127). Feeding electrons to microorganisms living on electrode surfaces has significant potential to contribute to bioremediation of a diversity of contaminants, including radioactive and toxic metals (38, 124), chlorinated compounds (1, 12, 119, 122, 128), and nitrate (37, 96). Microorganisms have the potential to catalyze the production of hydrogen and methane with electrons derived from electrodes (14, 35, 64, 133, 134). Electrons derived from electrodes can potentially serve as the reductant for effecting microbial reduction of organic compounds to more desirable organic commodities, or for altering fermentation pathways in desired directions (26, 44, 95, 118). Furthermore, with the newly developed process of microbial electrosynthesis (87, 93), it is possible to electrically power the microbial reduction of carbon
Microbial electrosynthesis: strategy for directly converting carbon dioxide to liquid transportation fuels and other useful organic commodities (63, 64). When driven with electricity generated from solar technologies, microbial electrosynthesis is functionally an artificial form of photosynthesis with the potential to be much more efficient and environmentally sustainable than biomass-based strategies for fuel and chemical production.

Findings from the study of microbe-electrode exchange have also led to new insights into the functioning of anaerobic ecosystems (63). For over 40 years it has been considered that microorganisms in methanogenic environments exchange electrons primarily via interspecies transfer of hydrogen, with the electron-donating microorganism disposing of electrons by reducing protons to hydrogen and an electron-accepting methanogen oxidizing hydrogen with the reduction of methane (81, 117). However, it is feasible for different species of microorganisms to forge direct electrical connections, similar to those that they establish with electrodes (123), and direct interspecies electron transfer can be the primary mechanism for electron exchange in microbial aggregates converting wastes to methane (86).

These developments demonstrate that a better understanding of the mechanisms by which microorganisms exchange electrons with electrodes could benefit the development of various new technologies as well as provide a better understanding of anaerobic microbial ecology. As more is learned, additional applications will probably emerge. This review summarizes current knowledge on microbe-electrode interactions and the novel electronic materials that some microorganisms can produce.

WHY MICROORGANISMS MIGHT INTERACT ELECTRONICALLY WITH ELECTRODES

A key to understanding the mechanisms of microbe-electrode interactions may be to elucidate how this capability evolved. For example, short-term adaptive evolution studies have provided insight into the mechanisms for electron transfer to electrodes and Fe(III) oxides (132, 141). The mere fact that microorganisms are able to exchange electrons with electrodes to produce electric current and can consume current to power their respiration is fascinating, especially when it is considered that electrodes, per se, are not a part of the natural environment. It has been suggested that microbe-electrode exchange is a fortuitous result of the fact that some microorganisms have developed over billions of years of evolution effective strategies for extracellular electron exchange with insoluble minerals and related natural extracellular electron acceptors or donors (59, 64).

However, there is a significant difference between insoluble minerals and electrodes. Electrodes provide a surface with long-term electron-accepting or electron-donating capacity, whereas the ability of individual insoluble minerals to accept or donate electrons is eventually depleted. Hence, the relationship between cells and electrodes is different from that between cells and minerals. This is readily apparent with Geobacter species. When actively reducing Fe(III) oxides, Geobacter species express flagella and are motile, presumably because they need to continually search for new sources of Fe(III) (15, 63). In contrast, when Geobacter species are oxidizing organic compounds with electron transfer to electrodes, they are not planktonic. The cells firmly attach to the electrode surface and form thick (>80 μm) metabolically active biofilms (32, 88, 104). The physiological status of these sessile cells packed in biofilms and provided with a constant electron acceptor is expected to be much different from that of planktonic cells actively hunting for minerals on which to dump electrons. Electron transfer to electrodes can be much faster than electron transfer to Fe(III) oxides, proceeding at rates comparable to the reduction of soluble, chelated Fe(III) (4). Is there a better natural analog for electrodes than small individually dispersed minerals?

One option may be graphite deposits. These deposits, which have significant conductivity, can span distances up to 1 km and appear able to transmit electrons between anaerobic and oxic zones.
in the subsurface, producing a geobattery (3). In this initial geobattery concept, electron transfer to the graphite in the anaerobic zone was discussed as abiotic, with reduced chemical species such as ferrous iron donating electrons to the graphite (3). In a similar manner, it was initially proposed that electron transfer to electrodes was abiotic in benthic microbial fuel cells designed to harvest electricity from anaerobic marine sediments (105). However, subsequent studies (5, 41, 125) revealed a specific enrichment of Geobacteraceae microorganisms on the surface of the electron-accepting electrodes (the anodes), which could be attributed to the ability of these microorganisms to oxidize organic compounds with direct electron transfer to electrodes. Graphite is a preferred electrode material. The ability of the electron-accepting end of geobattery graphite deposits to serve as a consistent, long-term electron sink would provide an environment highly analogous to the graphite anodes of microbial fuel cells. Therefore, it seems likely that microorganisms that are highly effective in current production in microbial fuel cells may have first perfected this capability as catalysts promoting electron flow in geobatteries. Additional study of these, and possibly other natural analogs for electrodes, could enhance our understanding of microbe-electrode interactions.

MECHANISMS FOR ELECTRON TRANSFER TO ELECTRODES

As previously reviewed in detail (59), many microorganisms can exchange electrons with electrodes when artificial electron shuttles are provided. Shuttles such as methylviologen, neutral red, or thionine can accept electrons from redox-active moieties within cells and transfer the electrons to electrodes. However, the practical benefit of this type of electrical interaction has yet to be proved; electron shuttles are often unstable and toxic, are uneconomical in large-scale processes, and cannot be employed in open environments.

Microorganisms transfer electrons to an electrode without the addition of an artificial electron shuttle in three ways (Figure 1): (a) electron transfer via microbially produced soluble redox-active molecules, (b) short-range direct electron transfer between redox-active molecules on the outer cell surface and the electrode; and (c) long-range electron transport through conductive biofilms (62). As detailed below, Geobacter sulfurreducens, the microorganism that produces the highest currents in pure culture (92, 141), appears to accomplish this with a combination of long-range electron transport through thick, conductive biofilms and short-range electron transfer between the conductive biofilm and the electrode that is mediated by an extracellular c-type cytochrome.

Electron Transfer via Soluble Electron-Shuttling Molecules

A diversity of both gram-negative and gram-positive microorganisms have the ability to produce electron shuttles to promote electron transfer to electrodes (101). The concept of self-produced electron shuttles facilitating electron transfer to electrodes follows previous studies that demonstrated that some microorganisms produce shuttles that promote electron transfer between cells and insoluble Fe(III) oxides (54, 90, 91, 94). For example, Geothrix fermentans, which can reduce Fe(III) oxide enclosed in porous alginate beads via a shuttle (90), also appeared to release an electron shuttle to promote electron transfer to electrodes (7).

Shewanella species have a similar ability to reduce Fe(III) with which they are not in direct contact (54, 91); this is attributed to the release of flavin in S. oneidensis cultures (135). The finding that cells of S. oneidensis were primarily planktonic in microbial fuel cells suggested that an electron shuttle was also involved in electron transfer to electrodes (50). The role of flavins in promoting electron transfer to electrodes with S. oneidensis has been well established by electrochemical studies (2, 78). S. oneidensis can reduce flavins at the outer cell surface with the c-type cytochrome
Potential mechanisms for microorganisms to transfer electrons to electrodes. (a) Short-range electron transfer by microorganisms in close association with the electrode surface through redox-active proteins, such as c-type cytochromes associated with the outer cell surface or in the extracellular matrix. (b) Electron transfer via reduction of soluble electron shuttles released by the cell. Oxidized shuttle molecules are reduced at the outer cell surface, and the reduced shuttle molecules donate electrons to the electrode. (c) Long-range electron transport through a conductive biofilm via electrically conductive pili, accompanied by short-range electron transfer from the biofilm to the electron mediated by extracellular cytochromes as in panel a.

MtrC (18), which is part of a multiprotein complex that transports electrons from the periplasm to the outer surface of the cell (16, 39).

Electrons can hop directly from MtrC to an electrode (2, 55). However, direct electron transfer in intact cells was possible only when anodes were artificially poised at positive potentials significantly higher than those typical of microbial fuel cells, and the rates of electron transfer were much faster in the presence of flavin. These results suggest that electron transfer via a flavin is the preferred route of electron transfer in S. oneidensis microbial fuel cells. Furthermore, elegant studies in which direct contact between S. oneidensis and electrodes could be prevented with a nonconducting mask with nanohole openings demonstrated that current was produced when the possibility for contact was eliminated as well as when cells established contact (48). The conclusion from these studies was that electron transfer via an electron shuttle was the predominant means of electron transfer even when cells were in contact with the electrode. In a similar manner, it is possible for MtrC to transfer electrons directly to Fe(III) oxides, but the rates of electron transfer are too low to account for observed rates of Fe(III) oxide reduction (109). MtrC serves as flavin reductase (18), and only in the presence of flavin can MtrC transfer electrons to Fe(III) oxide at physiologically relevant rates (109).
The maximum current densities produced by microorganisms that rely on electron shuttling to transfer electrons to electrodes are much lower than those for microorganisms capable of long-range electron transport through thick conductive biofilms because the slow diffusive flux of the shuttle is a major limitation (129). Although the shuttling mechanism may be somewhat effective in closed laboratory systems, in open environments this approach suffers from losses of the shuttle from the immediate microbe-electrode interface. For these and other reasons (59), it is not surprising that *Shewanella* species have never been found to be important constituents of anodes harvesting electricity from complex organic matter in open environments (49, 63).

Short-Range Direct Electron Transfer via Redox-Active Proteins

Evidence for direct electron transfer to electrodes has been presented for several microorganisms (6, 13, 40, 77, 139, 140). The mechanisms for direct electron transfer to electrodes have been studied most extensively in *G. sulfurreducens*. *G. sulfurreducens* is closely related to the *Geobacter* species that typically predominate on electrodes harvesting current from organic matter, especially when oxygen intrusions are eliminated so that organic substrates are efficiently converted to current, and when the electrode potential is not artificially poised with electronics (49, 66). Early investigations suggested that, just as *Geobacter* species do not use shuttles to reduce Fe(III) oxide (89), shuttles are not involved in electron transfer to electrodes (6). This was subsequently demonstrated more definitively by electrochemical studies (9, 10, 79, 80, 106).

G. sulfurreducens has a wide diversity of *c*-type cytochromes (84), many of which are exposed on the outer surface of the cell (20, 45, 53, 83, 99). The outer-surface *c*-type cytochromes that have been purified can reduce known extracellular electron acceptors in vitro (45, 67, 99). Gene deletion studies suggest that these same *c*-type cytochromes transfer electrons to a diversity of extracellular electron acceptors in vivo (51, 52, 83, 112, 136). Numerous studies of current-producing *G. sulfurreducens* biofilms have demonstrated that *c*-type cytochromes are in electrochemical communication with the anode (9, 10, 11, 27, 34, 47, 56, 57, 79, 80, 85, 106, 116, 121). In some instances the cytochromes are positioned close enough to the electrode surface for direct electron transfer from the cytochromes to the electrode (9) and hence function as the electrochemical gate between cells in contact with the electrode and the electrode surface (21).

Comparison of gene expression in current-producing cells versus expression in cells growing on alternative electron acceptors, as well as gene deletion studies, identified several candidate outer-surface *c*-type cytochromes that might help *G. sulfurreducens* make electrical contacts with electrodes (42, 88). OmcS was implicated in thin biofilms generating low levels of current (42), but OmcZ appears to be the most important cytochrome in biofilms producing high levels of current (88). OmcZ is a hydrophobic protein with a molecular mass of 30 kDa (45). It has eight hemes, which cover a wide range of redox potentials (−420 mV to −60 mV). The midpoint potential is −220 mV. Deletion of *omcZ* greatly inhibited current production (88), as did deletion of another gene that significantly reduced the abundance of OmcZ on the outer cell surface (107). Cyclic voltammetry demonstrated an increased resistance to electron transfer to electrodes in the OmcZ-deficient strain. Deleting genes for other outer-surface *c*-type cytochromes did not yield a similar response (106).

Immunogold labeling of current-producing biofilms demonstrated that significant quantities of OmcZ accumulated at the biofilm/anode interface, indicating that it was ideally positioned to facilitate electron transfer to electrodes (45). This accumulation of OmcZ was not observed in biofilms grown on the electrode material, but with fumarate serving as the electron acceptor (45).

Thus, multiple lines of evidence suggest that OmcZ is the key cytochrome for electron transfer between *G. sulfurreducens* biofilms and anodes. Further investigation of the properties that uniquely
suit OmcZ for this purpose is required. Also, although it is possible for *G. sulfurreducens* to overcome deletion of other genes that are highly expressed in current-producing biofilms, such as the gene for the outer-membrane-bound c-type cytochrome OmcB (88), this does not mean that electron flow through these components is not important in wild-type cells, because cells may adapt with increased expression of other cell components. A better understanding of the role of other outer-surface components, such as putative multi-copper proteins (43, 82), is also required.

Of the other microorganisms that appear to make direct electrical contact with electrodes, some of the most surprising are the gram-positive species of the genus *Therminocola* (77, 139, 140). The abundant c-type cytochromes in *T. potens* were involved in extracellular electron transfer and might be the electrical contacts with electrodes (140). Only cells in direct contact with the electrode appeared to contribute to current production, suggesting that a mechanism for long-range electron transport was absent (140).

Long-Range Electron Transport via Conductive Pili

The current production capability of a monolayer of cells in direct contact with an electrode surface is limited by the space available for microorganisms to directly access the electrode surface. Higher-current densities (current produced per surface area of electrode) are possible from electrically conductive biofilms, which permit multiple layers of cells to contribute to current production (104). As previously reviewed (74), the biofilms of most microorganisms appear to act as insulators rather than conductors and the concept of a conductive biofilm is still rather new and controversial (70).

Conductive pili and biofilms of *Geobacter sulfurreducens*. The possibility of a conductive biofilm was first proposed in studies on current-producing biofilms of *G. sulfurreducens* (104) and subsequently confirmed by direct measurements (74). Conductive biofilms have been invoked or inferred in other studies (56, 75, 97, 129). However, failure to measure conductivity, as well as highly speculative and unsubstantiated models for conductivity, has led to significant debate about the mechanisms for long-range electron transport through biofilms (70, 73), which can be resolved only by additional direct measurements of conductivity and rigorous experimentation.

The high conductivity of current-producing biofilms of *G. sulfurreducens* (74) allows cells at distances of multiple cell lengths from the anode to contribute to current production (31, 104). The available evidence suggests that the conductivity of the biofilms can be attributed to a dense network of pili with metallic-like conductivity (74).

Initial interest in the type pili of *Geobacter* species came from the observation that *Geobacter metallireducens* expressed pili when growing on insoluble electron acceptors, such as Fe(III) or Mn(IV) oxides, but not when grown with soluble Fe(III) citrate (15), even though Fe(III) citrate is also an extracellular electron acceptor (17). Increased pili production was associated with higher expression of the gene for PilA, the structural protein for type IV pili (15), which are ubiquitous in gram-negative bacteria (19). *G. sulfurreducens* pili have a gross morphology (3–5 nm in width and up to 10–20 μm in length) that is similar to that of other type IV pili, but so far only the pili of *G. sulfurreducens* have been shown to be conductive.

Deletion of the gene for PilA inhibited the capacity for Fe(III) oxide reduction, but not the reduction of Fe(III) citrate (103). Addition of anthraquinone-2,6-disulphonate as a soluble electron shuttle alleviated the inhibition of Fe(III) oxide reduction in the *pilA* mutant. These results suggested that the PilA pili were required specifically for Fe(III) oxide reduction, but not for electron transfer to the outer surface of the cell.

Conductivity across the diameter of individual, chemically fixed pili was observed with conducting atomic force microscopy (103). Additional cellular material was often associated with the
Microbial nanowires: pili capable of long-range electron transport

pili and acted as insulators for current flow between the conducting tip and the graphite. This observation led to the suggestion that the pili themselves were conductive, rather than the alternative that the pili served as a scaffold for electron-hopping between pilin-associated proteins, and that conduction along the length of the pili permitted *G. sulfurreducens* to greatly extend the potential distance for extracellular electron transfer (103). Thus, the pili were termed microbial nanowires.

Circumstantial evidence that the pili could carry out long-range electron transport came from studies with *G. sulfurreducens* growing on graphite electrodes serving as an electron acceptor. Viability staining indicated that cells at distance from the electrode were viable, and a direct correlation between the extent of current production and biofilm biomass suggested that the cells not in direct contact with the electrode were contributing as much to current production as cells at the electrode surface (104). The simplest explanation for these observations was that long-range electron transport through the biofilm was possible. The finding that a *pilA* mutant did not form thick biofilms on electrodes suggested that a network of microbial nanowires was responsible for the conduction through the biofilm (104). Subsequent observations demonstrated that *pilA* was one of the most highly upregulated genes in current-producing biofilms, providing further circumstantial evidence for the role of pili in current production (88).

Direct measurements of the conductivity of live *G. sulfurreducens* biofilms growing on two gold electrodes that converged across a nonconductive gap demonstrated that the biofilms were conductive, with conductivities rivaling those of synthetic organic conducting polymers (74). Evaluation of different strains of *G. sulfurreducens* revealed significant differences in biofilm conductivity (74); strains that produced more conductive biofilms generated higher current densities in microbial fuel cells (72). There was a strong correlation between conductivity levels and expression of PilA. For example, a strain of *G. sulfurreducens* that was selected specifically for its capacity for high current production and expressed more pili (141) also formed biofilms with the highest conductivity (74).

Surprisingly, the conductivity of the *G. sulfurreducens* biofilms exhibited properties consistent with metallic-like conductivity (74). For example, conductivity initially increased exponentially with a decrease in temperature, a hallmark characteristic of metallic-like conductivity that was previously observed in conducting organic polymers. A similar metallic-like conductivity was observed when pili preparations were spotted on the two-electrode system, forming a network that bridged the nonconducting gap between the electrodes. X-ray diffraction analysis of pili suggested π-π stacking, similar to that previously documented in the organic metal polyaniline (74). Thus, a working hypothesis is that aromatic amino acids are aligned along the outer surface of the pili to provide the apparent π-π stacking. Another similarity to polyaniline was that the addition of protons to the pili preparations greatly increased their conductivity (74).

The apparent metallic-like conductivity along the pili of *G. sulfurreducens* is in marked contrast to previously described biological electron transfer via electron hopping or tunneling. It is well known that electrons associated with a discrete molecule, such as a cytochrome, can move to another molecule if the two molecules are sufficiently close (<20 Å) (23, 115). However, in metallic-like conductivity the electrons are delocalized. The possibility of delocalized electron transfer in biomolecules has previously been dismissed “due to their lack of periodicity, random fluctuations, and limited conductance values from experiments” (115).

The metallic-like conductive properties of the pili of *G. sulfurreducens* rule out the possibility that electrons are conducted along the length of pili via electron hopping between discrete electron-carrier molecules associated with the pili, such as cytochromes. Furthermore, denaturing cytochromes in pili preparations had no impact on conductivity (74). However, the multiheme *c*-type cytochrome OmcS (100) is specifically associated with the pili of *G. sulfurreducens* (53). Initial observations with immunogold labeling suggested that the OmcS molecules were spaced too
far apart for electron hopping between OmcS molecules to account for electron transport along the pili (53), and this finding has subsequently been confirmed by atomic force microscopy (N. Malvankar, unpublished data). OmcS is required for Fe(III) oxide reduction (83). Therefore, it has been proposed that there are barriers to direct electron transfer from pili to Fe(III) oxides and the hypothesized role of OmcS is to facilitate electron transfer from the pili to Fe(III) oxides (63).

In a similar manner, the absolute need for OmcZ, as well as pili, for the production of the highest-current densities in *G. sulfurreducens* biofilms (88, 106), coupled with the localization of OmcZ at the biofilm/anode interface (45), suggests a two-phase electron transport process to electrodes, in which long-range electron transport through the biofilm is along the pili network and OmcZ facilitates the electron transfer from the biofilm to the electrode (63). It is conceivable that with a change in environmental conditions and/or electrode materials that electrochemical gates other than OmcZ may become important. Monitoring electron transfer between specific cytochromes and electrodes as well as cytochrome-to-cytochrome electron transfer may become possible as new tools for simultaneously monitoring the redox status of cytochromes and electron transfer to electrodes become available (57).

The present model for long-range electron transport in *Geobacter* biofilms suggests that one avenue to increase current production might be to increase biofilm conductivity. Comparison of direct measurements of biofilm conductivity and the amount of current produced in microbial fuel cells with different strains of *G. sulfurreducens* demonstrated that there was a direct correlation between biofilm conductivity and current production (72). Furthermore, strains with higher biofilm conductivities had lower resistance to electron transfer across the biofilm/anode interface, presumably because electrons were delivered to the interface at a lower potential when resistance to transport through the biofilm was lower.

However, with the best current-producing isolate, strain KN400, the relationship between biofilm conductivity and current production deviated from the strong linear relationship observed with other strains (72). This result suggests that as the current-production capacity of microorganisms is increased, factors other than the maximum potential respiration rate and capacity for long-range electron transport of the organisms begin to limit current production. One possibility is that the protons that must be released from cells during extracellular electron transfer (68) accumulate to levels within the biofilm that inhibit microbial activity (32, 76, 130).

It is not yet known whether the pili of other *Geobacter* species are electronically conductive, but it has been demonstrated that the PilA pili of *G. metallireducens* are required for optimal Fe(III) oxide reduction and current production (131). The metallic-like conductivity of methane-producing aggregates from a wastewater treatment plant suggested that *Geobacter* species, and possibly other organisms in this mixed natural community, were capable of producing conductive filaments (86).

Putative conductive filaments in other microorganisms. Electrically conductive pili greatly benefit *Geobacter* species in their ability to electronically interact with their extracellular environment, and it would be surprising if other microorganisms had not adopted a similar strategy. In fact, preliminary evidence, based on scanning tunneling microscopy, has suggested that a wide diversity of microorganisms produce conductive filaments (36). However, there was significant uncertainty about the filament structure and the mechanisms for conductivity.

The studies focused primarily on filaments of *S. oneidensis*. The diameter of the filaments (50 to >150 nm) was much too broad for the filaments to be type IV pili. Furthermore, direct examination of a role of pili in extracellular electron transfer suggested they are not important in extracellular electron transfer in *S. oneidensis*, as strains that could not produce pili filaments continued to produce electrical current better than wild-type strains (8).
It was suggested that cytochromes associated with *S. oneidensis* filaments conferred conductivity because conductive filaments could not be detected in a mutant strain that did not produce two outer-surface c-type cytochromes or a mutant strain deficient in a type II secretion system required for cytochrome export (36). Cytochrome-based conductivity was also inferred from studies using conducting tip atomic force microscopy (24). However, no direct evidence for the association of cytochromes with the filaments has ever been reported and it is generally regarded that the cytochromes in question are associated with the outer surface of the cell body rather than filaments (113). Furthermore, it seems unlikely that cytochromes could be packed tightly enough along pili to confer conductivity via cytochrome-to-cytochrome electron hopping.

As noted above, there is substantial evidence that much of the extracellular electron transfer in *S. oneidensis* is likely to proceed via soluble electron shuttles. The fact that *S. oneidensis* cannot form thick biofilms on electrodes under strict anaerobic conditions (50, 74) further suggests that it is not capable of long-range electron transfer via conductive pili. Therefore, even though conductance could be measured along the length of a filament of *S. oneidensis* (25), the available evidence suggests that it is unlikely that long-range electron transport along conductive filaments is a significant process in *S. oneidensis*.

Scanning tunneling microscopy also suggested that a strain of *Synechocystis*, a phototrophic cyanobacterium, produced conductive filaments and that the thermophilic fermentative bacterium *Pelotomaculum thermopropionicum* produced conductive filaments that established connections with the methanogen *Methanothermobacter thermautotrophicus* (36). A physiological role for the filaments of *Synechocystis* has yet to be determined. Subsequent studies with the *P. thermopropionicum*–*M. thermautotrophicus* coculture identified the filament spanning between the two organisms as a flagellum (114), suggesting that the role of the filament is to establish contact between the two microorganisms, not to mediate electron transfer (81). As previously discussed in detail (61), long-range electron transport via microbial nanowires should not be invoked without evidence for conduction along the length of the proposed nanowires and a demonstration that the filaments are required for the reduction of the proposed electron acceptor.

FEEDING ELECTRONS TO MICROBES

As limitations in producing electrical current with microbial fuel cells have become apparent, there has been a significant shift in focus toward the development of practical applications in which electrons flow from electrodes to microorganisms (64, 65, 102). Feeding electrons to microbes typically involves an input of energy that can help alleviate many of the limitations that arise when trying to extract energy with microbial fuel cells.

As previously reviewed (127), electrons can be supplied indirectly to microorganisms via artificial electron shuttles, but this approach has the same limitations for practical applications that were discussed above for current production. It is also possible to electrochemically reduce protons to hydrogen gas, but the low solubility and explosive nature of hydrogen gas limit the usefulness of this approach for most applications (127). Furthermore, efficient production of hydrogen gas typically requires expensive metallic catalysts or substantial inputs of energy to overcome sluggishness in proton reduction at electrode surfaces. Therefore, direct electron transfer from electrodes to microorganisms is expected to be the best choice for most applications as long as sufficiently high rates of electron transfer can be established (127).

The possibility that direct electron transfer from electrodes to microbes could drive microbial respiration was first noted in *Geobacter* species that have the capacity to reduce fumarate (37), nitrate (37), uranium (38), and chlorinated compounds (119, 122) with an electrode as the sole electron donor. A series of control studies demonstrated that hydrogen gas was not an
intermediate in electron transfer between the electrode and the cells, and all the available evidence suggested that the *Geobacter* species were accepting electrons directly from the electrode (37). Gene expression patterns in biofilms of *G. sulfurreducens* reducing fumarate with an electrode as the electron donor were significantly different from those in *G. sulfurreducens* biofilms producing current (120). Deletion of genes, such as *omcZ* and *pilA*, that are essential for current production, had no impact on current consumption, whereas deletion of a cytochrome gene that is essential for current consumption had no impact on electron transfer to electrodes (120). These results suggest that the route for electron transfer from electrodes into *Geobacter* species is different from that for electron transfer in the opposite direction, a conclusion that is also supported by electrochemical studies (22). In contrast, electrons provided to *S. oneidensis* for fumarate reduction appear to enter via the same Mtr pathway that is responsible for electron flow to the outer cell surface (110).

Mechanisms for energy conservation in cells receiving electrons from electrodes are poorly understood (64, 108). A potential source of energy conservation is the proton gradient across the inner membrane that should be generated when protons are consumed to reduce electron acceptors in the cytoplasm (64). Biofilms of current-consuming *Geobacter* species are much thinner than current-producing biofilms, suggesting that energy conservation is poorer for current consumption than for current generation.

Only a few pure cultures other than *Geobacter* and *Shewanella* species have been shown to carry out anaerobic respiration on cathodes. It was suggested that the methanogen *Methanobacterium palustre* (14) was capable of accepting electrons directly from electrodes, but there was the possibility of significant hydrogen production under the conditions employed (64, 134). *Anaeromyxobacter dehalogenans* could reduce fumarate and reductively dehalogenated 2-chlorophenol to phenol with an electrode serving as the sole electron donor (119). Proof-of-concept studies for microbial electrosynthesis, the process in which microorganisms use electrons derived from electrodes for the reduction of carbon dioxide to organic products, demonstrated that a number of acetogenic microorganisms accepted electrons for the reduction of carbon dioxide to acetate at potentials too high for hydrogen to serve as the intermediate for electron transfer (87, 93). Deleting the gene for the hydrogen-uptake hydrogenase in one of these acetogens, *Clostridium ljungdahlii*, had no impact on current consumption, further suggesting that electrons are transferred from the electrode directly to the cells (T. Ueki & K.P. Nevin, unpublished data).

BIOELECTRONICS

Electrically active microorganisms have the potential to make significant contributions to the emerging field of bioelectronics (138). For example, the ability of microorganisms to sense a wide diversity of chemicals and environmental conditions, coupled with the possibility of translating a response into an electrical signal, suggests many possibilities for the development of biological sensors and biocomputing (126). Furthermore, the discovery of unexpected electronic properties of conductive biofilms and the prospect of long-range electron transport through networks of conductive pili have opened the possibility that these materials may serve as models for the development of new synthetic electronic materials or may even be used directly in novel “living” electronic devices.

Electronics grown or constructed from living materials have the potential benefits that they can be produced from inexpensive feedstocks with little waste generation and avoid the use of toxic compounds. If the living microorganisms and their components are part of the electronic application, they can have the capacity for self-repair and replication. Charge can be transmitted and stored underwater. Furthermore, the demonstrated ability of some microorganisms and/or their extracellular components to make electrical contacts with electrodes suggests that they may be
ideal tools for establishing electrical connections between abiological and biological components in medical devices and sensors.

In addition to their high conductivity, biofilms of *G. sulfurreducens* can function as supercapacitors (71). The abundant c-type cytochromes in the biofilms (28, 57, 61, 111) provide a capacitance comparable to that of synthetic supercapacitors with low self-discharge rates (71). The likelihood of manipulating both conductivity and capacitance with genetic engineering (71, 74), as well as improving the cohesiveness and other beneficial properties of the biofilms (C. Leang, unpublished data), demonstrates the potential for further developing these materials for practical applications. *G. sulfurreducens* biofilms can function as transistors, offering the possibility of developing field-effect transistors and other logic devices based on microbial nanowires (74, 98).

The metallic-like conductivity of pili offers the possibility of mass-producing novel wires for electronics. As the mechanisms for conductivity are elucidated, it should be feasible to modify the properties of the wires for specific applications. If the concept that cytochromes associated with pili facilitate electrical connections between pili and external electron acceptors/donors is correct, then it can be envisioned that it may be possible to genetically modify the structure of the electrical connection or to introduce new connectors to provide new functionalities.

FUTURE DIRECTIONS

There are many promising future research avenues in electromicrobiology. Our understanding of how microorganisms donate electrons to electrodes is still rather superficial and even less is known about electron transfer from electrodes to cells. Furthermore, previous study on this topic has been limited to a few microbes. It is remarkable that the organisms that have been studied in detail, *T. potens*, *S. oneidensis*, and *G. sulfurreducens*, have significantly different approaches for transferring electrons to electrodes. The intensive study of the electrophysiology of *Shewanella* and *Geobacter* species has been possible only because of substantial earlier investments that facilitated systems-scale investigations (33, 69). Similar in-depth investigations of other organisms are warranted. Elucidation of the mechanisms for metallic-like conductivity along pili and further investigation into the diversity of microorganisms that possess conductive filaments, the function of those filaments, and their mechanisms for conduction are needed.

Electromicrobiology has the potential to alleviate pressing societal needs. Although the justification for many of the early studies in electromicrobiology was further optimization of microbial fuel cells for energy harvesting, many more promising concepts for applications for microbe-electrode interactions have recently emerged and undoubtedly more will be envisioned. For example, as noted in the Introduction, the ability to favorably alter microbial fermentation with a supply of electrons from electrodes has been demonstrated, but only with the addition of soluble mediators. Developing a system for direct electron transfer might make this technology practical at a large scale. The rationale development of any of these technologies will depend on continued study of basic mechanisms of electromicrobiology.

SUMMARY POINTS

1. Electromicrobiology is a rapidly emerging field of microbiology.
2. Some microorganisms have the ability to either donate electrons to, or accept electrons from, electrodes.
3. Some microorganisms exchange electrons with electrodes via soluble molecules that facilitate electron transfer between the cells and the electrodes.
4. Other microorganisms can directly exchange electrons with electrodes via outer-surface, redox-active proteins, such as c-type cytochromes.

5. Geobacter species can produce thick, conductive biofilms with supercapacitor and transistor properties and conductivities that rival those of synthetic conductive polymers.

6. The pili of G. sulfurreducens can function as electrical wires, transporting electrons with metallic-like conductivity, a property not previously observed in biological materials.

7. Microbe-electrode exchange offers a number of potential practical applications in bioenergy, sensing, and bioremediation and serves as a model for important natural phenomena, such as interspecies electron transfer in anaerobic environments.

8. The electronic materials that microorganisms can produce have the potential to be incorporated into novel electronic devices or serve as models for the production of new synthetic electronic materials.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Electromicrobiology research in my laboratory is supported by the Advanced Research Projects Agency–Energy (ARPA-E), U.S. Department of Energy, under awards no. DE-AR0000087 and DE-AR0000159; the Office of Naval Research grants no. N00014-10-1-0084 and N00014-12-1-0229; and the Office of Science (BER), U.S. Department of Energy, under awards no. DE-SC0004114 and DE-SC000448 and cooperative agreement no. DE-FC02-02ER63446.

LITERATURE CITED

RELATED RESOURCES

www.electrofuels.org
Contents

A Fortunate Journey on Uneven Grounds
 Agnes Ullmann ... 1

Memories of a Senior Scientist: On Passing the Fiftieth Anniversary of the Beginning of Deciphering the Genetic Code
 Peter Lengyel ... 27

Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance
 Rajendra Prasad and Andre Goffeau 39

‘Gestalt,’ Composition and Function of the Trypanosoma brucei Editosome
 H. Ulrich Göringer .. 65

Physiology and Diversity of Ammonia-Oxidizing Archaea
 David A. Stahl and José R. de la Torre 83

Bacterial Persistence and Toxin-Antitoxin Loci
 Kenn Gerdes and Etienne Maisonneuve 103

Activating Transcription in Bacteria
 David J. Lee, Stephen D. Minchin, and Stephen J.W. Busby 125

Herpesvirus Transport to the Nervous System and Back Again
 Gregory Smith ... 153

A Virological View of Innate Immune Recognition
 Akiko Iwasaki ... 177

DNA Replication and Genomic Architecture in Very Large Bacteria
 Esther R. Angert .. 197

Large T Antigens of Polyomaviruses: Amazing Molecular Machines
 Ping An, Maria Teresa Sáenz Robles, and James M. Pipas 213

Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms
 Laurent Pieuchot and Gregory Jedd 237
New From Annual Reviews:

Annual Review of Statistics and Its Application

Volume 1 • Online January 2014 • http://statistics.annualreviews.org

Editor: Stephen E. Fienberg, Carnegie Mellon University

Associate Editors: Nancy Reid, University of Toronto
Stephen M. Stigler, University of Chicago

The *Annual Review of Statistics and Its Application* aims to inform statisticians and quantitative methodologists, as well as all scientists and users of statistics about major methodological advances and the computational tools that allow for their implementation. It will include developments in the field of statistics, including theoretical statistical underpinnings of new methodology, as well as developments in specific application domains such as biostatistics and bioinformatics, economics, machine learning, psychology, sociology, and aspects of the physical sciences.

Complimentary online access to the first volume will be available until January 2015.

TABLE OF CONTENTS:

- **What Is Statistics?** Stephen E. Fienberg
- **The Role of Statistics in the Discovery of a Higgs Boson**, David A. van Dyk
- **Brain Imaging Analysis**, F. DuBois Bowman
- **Statistics and Climate**, Peter Guttorp
- **Climate Simulators and Climate Projections**, Jonathan Rougier, Michael Goldstein
- **Probabilistic Forecasting**, Tilmann Gneiting, Matthias Katzfuss
- **Bayesian Computational Tools**, Christian P. Robert
- **Bayesian Computation Via Markov Chain Monte Carlo**, Radu V. Craiu, Jeffrey S. Rosenthal
- **Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models**, David M. Blei
- **Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues**, Martin J. Wainwright
- **High-Dimensional Statistics with a View Toward Applications in Biology**, Peter Bühlmann, Markus Kalisch, Lukas Meier
- **Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data**, Kenneth Lange, Jeannette C. Papp, Janet S. Sinsheimer, Eric M. Sobel
- **Breaking Bad: Two Decades of Life-Course Data Analysis in Criminology, Developmental Psychology, and Beyond**, Elena A. Erosheva, Ross L. Matsueda, Donatello Telesca
- **Event History Analysis**, Niels Keiding
- **Statistical Evaluation of Forensic DNA Profile Evidence**, Christopher D. Steele, David J. Balding
- **Using League Table Rankings in Public Policy Formation: Statistical Issues**, Harvey Goldstein
- **Statistical Ecology**, Ruth King
- **Estimating the Number of Species in Microbial Diversity Studies**, John Bunge, Amy Willis, Fiona Walsh
- **Dynamic Treatment Regimes**, Bibhas Chakraborty, Susan A. Murphy
- **Statistics and Related Topics in Single-Molecule Biophysics**, Hong Qian, S.C. Kou
- **Statistics and Quantitative Risk Management for Banking and Insurance**, Paul Embrechts, Marius Hofert

Access this and all other Annual Reviews journals via your institution at www.annualreviews.org.