Posted on

Bio-electrical system removes nitrogen from the wastewater

Hazardous compound removal from sewage such as organic matter and nitrogen makes wastewater treatment an energy intensive process. For example, treating activated sludge requires blowing oxygen or air into raw, unsettled sewage. This aeration significantly increases the cost of the wastewater treatment. About 5 kWh per kilogram nitrogen are required for aeration depending on the plant. The cost associated with energy consumption makes uof approximately EUR 500,000 per year in an average European wastewater treatment plant. This is up to one-third of the total operational costs of WWTP. It is therefore obvious that nitrogen removal from wastewater must become more economical.

Alternative approach: Microbial electrochemical technology

The conventional way of removing nitrogen is a cascade of nitrification and denitrification reactions. Nitrification that is, aerobic ammonium oxidation to nitrite and nitrate is carried out by ammonia-oxidizing bacteria. Subsequent denitrification is the reduction of nitrate to nitrogen gas (N2). In addition to the costly aeration process, the remaining intermediate products as nitrite and nitrate require further effluent treatment.

Instead of expensive pumping of oxygen into the wastewater, bioelectrical systems could accomplish the same result at a much lower cost. In such systems, an electron accepting anode is used as electron acceptor for microbial ammonium oxidation instead of oxygen, making aeration obsolete.

Complete conversion of ammonium to nitrogen gas

We previously reported the use of such an bio-electrical system to remove ammonia from wastewater in fed-batch reactors. Now, researchers of the University of Girona reported proof-of-concept on a novel technology. Their bioelectrical system is a complete anoxic reactor that oxidizes ammonium to nitrogen gas in continuous mode. The dual-chamber reactor nitrifies and denitrifies and ultimately removes nitrogen from the system.

The electricity-driven ammonium removal was demonstrated in continuously operated one-liter reactor at a rate of ~5 g / m3 / day. A complex microbial community was identified with nitrifying bacteria like Nitrosomonas as key organism involved anoxic ammonium oxidation.

From an application perspective, comparison between bioelectrical systems and aeration in terms of performance and costs is necessary. The researchers reported that the same removal range and treatment of the similar amounts of nitrogen was achieved but that their bioelectrical system converted almost all ammonium to dinitrogen gas (>97%) without accumulation of intermediates. Their system required about 0.13 kWh per kilogram nitrogen energy at a flow rate of 0.5 L / day. Using a bioelectrical system consumes 35 times less energy compared with classic aeration (~5 kWh per kilogram). At the same time, no hazardous intermediates like nitrite or NOx gases are formed.

Unveiling microbial-electricity driven ammonium removal

The new article also indicated potential clues for microbial degradation pathway that may lead to better understanding of the underlying processes of anoxic ammonium removal in bioelectrical systems.

The proposed nitrogen removal pathway was the bioelectrical oxidation of ammonia to nitrogen monoxide, possibly carried out by a microbe named Achromobacter. That was supposedly followed by the reduction of the nitrogen monoxide to nitrogen gas, a reaction that could have been performed by Denitrasisoma. Alternatively, three other secondary routes were considered: bioelectrical oxidation followed by anammox, or without nitrogen monoxide directly to N2. Some sort of electro-anammox may also be possible.

At Frontis Energy, we believe that the direct conversion of ammonium to nitrogen gas through the reversal of nitrogen fixation is a possibility as nitrogen fixation genes are ubiquitous in the microbial world and it would generate the universal bio-currency ATP rather than consuming it.

It was shown that Achromobacter sp. was the most abundant microbe (up to 60%, according to sequence reads) in the mixed community. However, anammox species (Candidatus Kuenenia and Candidatus Anammoximicrobium) and denitrifying bacteria (Denitratisoma sp.) have been also detected in the reactor.

Two possible electroactive reactions were identified: hydroxylamine and nitrite oxidation, reinforcing the role of the anode as the electron acceptor for ammonium oxidation. Data obtained from nitrite and nitrate tests suggested that both, denitrification and anammox based reactions could take place in the system to close the conversion.

As a result, ammonium was fully oxidized to nitrogen gas without accumulated intermediates. Taking it all together, it has been shown that ammonium can be removed in bioelectrical system operated in continuous flow. However, further reactor and process engineering combined with better understanding of the underlying microbial and electrochemical mechanisms will be needed for process scale up.

Experimental system set-up

  • The inoculum consisted of a 1:1 mix of biomass obtained from nitritation reactor and an aerobic nitrification reactor of an urban treatment plant
  • The reactor design was constructed of two 1 L rectangular chambers comprising an anode and cathode compartment
  • The separator, an anion exchange membrane,  was used to minimize the diffusion of ammonium to the cathode compartment
  • The anode and cathode chambers were filled with granular graphite as electrode support
  • Ag/AgCl reference electrode was used in the anode compartment
  • Two graphite rods were placed as current collectors in each chamber
  • The system was operated in batch and semi-continuous mode

Image: 5056468 / Pixabay

Posted on

China has improved inland surface water quality

During the last decades, China has achieved rapid development in technology and economics, however at a huge environmental cost. The deterioration of inland surface water quality is considered one of the most serious environmental threats to ecosystem and ultimately public health.

Since 2001, China made major efforts to tighten the application of environmental rules in order to stop water pollution emitted by cities, farm and industry. According to the government’s “10th National Five-Year Plan”, large investments were made for pollution control and wastewater discharge regulation systems.

Small research studies showed that with this campaign, Chinese’s lakes and rivers got cleaner. Since then water quality has improved significantly − however, other parts of country still have problems with polluted water.

Now, a team of researchers of the at the Chinese Academy of Sciences in Beijing, has published one of the most comprehensive national investigation of China’s surface water quality in the renown journal Science. The researchers investigated all regions of the country to learn how surface water responds to multiple driving forces over time and space. Their report covers the assessment of water quality by means of three parameters: dissolved oxygen level (DO), chemical oxygen demand (COD) and ammonium nitrogen (N) in inland surface waters. They performed monthly site-level measurements at major Chinese rivers and lakes across the country between 2003 and 2017.

Due to regional variations in China’s inland water quality as well as the dynamics in multiple anthropogenic pollution sources, such studies are crucially important to identify the necessary regulation measures and water quality improvement policies adapted to ecosystem sustainability at all diverse country regions.

The results show that during the past 15 years, annual mean pollution concentration has declined across the country at significant linear rates or was maintained at acceptable levels. Consequently, the annual percentage of water quality have increased by 1.77% for COD, 1.83% for N and 1.45% for DO per year. While China has not yet implemented environmental water standards, the study shows that China’s water quality is improving nonetheless.

The best news is that the notoriously high pollution levels have declined as cities and industry have worked to clean up and reduce their discharges. According to the authors, the most visible alleviation was noticed in northern China, while in the western region of the country water quality remained at their low pollution level throughout the observation period. The reason is likely that pollution is caused by human activity, of which there is less in those parts of the country.

Despite large efforts toward decreased pollution discharges, urban areas are still considered as the major pollution centers. These areas face additional pressure due to the constant migration and fast urbanization of the rural regions. Especially in northern China, with high-density human activity and exploding urbanization, achieving and maintaining a clean environment is a permanent struggle.

To further reduce pollution and improve water quality, the authors recommend that future activities focus on water management systems and the water pollution control. For both, the central government issued guidelines to control and improve water use and pollution discharge at regional and national levels for 2020 and 2030.

At Frontis Energy, we certainly support activities in China that help improving the countries water quality and public health. The Frontis technology gives its user an incentive to to clean wastewater before discharge by extracting its energy. Our patent pending solutions are based on microbial electrolysis which helps to extract energy from wastewater and apply in particular to China.

Mima Varničić, 2020

(Photo: Gil Dekel / Pixabay)