Posted on

Microbial Power-to-Gas in exhausted oilfields as bridge between renewable and fossil energy

An abandoned or unproductive oilfield can be reused for methane production from CO2 using renew­able electrical power. Exhausted oilfields can be reactors for the conversion of renewable energy to natural gas using microbes. To achieve this, an oilfield can be made electrically conductive and catalytically active to produce natural gas from re­newable power sources. The use of natural gas is superior to any battery because of the existing infra­structure, the use in combustion engines, the high energy density and because it can be recycled from CO2. Oil­fields are superior to any on-ground production because of the enormous storage capaci­ties. They are already well explored and these geological formations underwent environmental risk assessments. Lastly, the microbial power-to-gas technology is already available.

Process summary

Whole process (end-to-end via methane)

50% electrical efficiency

Energy density of methane

180 kWh kg1

Storage capacity per oilfield

3 GWh day1

Charge/Discharge cycles

Unlimited

Investment (electrodes, for high densities)

$51,000 MW1

Cost per kWh (>5,000 hours anode lifetime)

<$0.01 kWh1

Electrolyte

Seawater

The Problem

To address the problem of storing renewable energy, batteries have been proposed as a possible so­lution. Lithium ion batteries have a maximum energy storage capacity of 0.3 kWh kg−1. To date, this is consid­ered the best trade-off between cost and efficiency but these batteries are still too inefficient to replace gasoline, which has a capacity of about 13 kWh kg−1. This makes battery driven cars heavier than conventional cars. Lithium air batteries are considered a possible al­ternative because they can reach theoretical capacities of 12 kWh kg−1 but technical difficulties have prevented them from being used for transportation.

In contrast, methane has an energy density of 52 MJ kg−1 corresponding to 180 kWh kg−1 which is sec­ond only to hydrogen with 500 kWh kg−1, not counting in nuclear energy. This high energy den­sity of methane and other hydrocarbons along with their facile usage, is the reason why they are used in combustion and jet engines that drive nearly all transportation to date. While electrical cars seem to be a tempting green alternative, the fact that combustion engines and the fueling infrastructure are so wide-spread makes it difficult to switch.

In addition to the difficulty of changing habits, battery-driven electrical cars need other limited natural resources such as lithium. To equip all 94 million automobiles produced worldwide in 2017, 3 mega tons lithium carbonate would need to be mined annually⁠. This is nearly 10% of the entire recoverable lithium resources of 35 mega tons worldwide. Although lithium and other met­als can be recycled, it is clear that metal based batteries alone will not build the bridge between green en­ergy and tradi­tional ways of transportation due to the low energy densities of metals. And this does not even take into account other energy de­mands such as industrial nitrogen fixation, aviation or heating.

For Germany, with its high proportion of renewable energy, fuel for cars is not the only problem. As re­newable energy is generated in the north, but many energy consumers are in the south, the grid ca­pacity is frequently reached during peak production hours. A steadier energy output can only be ac­complished by decentralizing the production or by en­ergy storage. To decentralize production, home­owners were en­couraged to equip their property with solar panels or wind­mills. As tax incentives phase out, homeowners face the prob­lem of energy storage. The best product for this group of cus­tomers so far are again lithium ion batteries but investment costs of $0.10 kWh−1 are still unattractive espe­cially be­cause these products store the en­ergy as electricity which can only be used for a short time and is less efficient than natural gas when used for heating.

Natural gas is widely used as energy source today and the global energy infrastructure is designed for natural gas and other fossil fuels. Increasing demand and lim­ited resources for these fossil fuels were the main driv­ers of oil and gas prices during the last years, slowed by the recent economic crises and hydraulic fractur­ing (fracking). The high oil price attracted in­vestors to recover oil using techniques that be­come in­creasingly expensive and are environmental risks such as deep-sea drilling or tar sand extraction. Ironically, the high oil price made costly renew­able ener­gies an economically feasible alterna­tive and helped driving down their cost. Since habits are difficult to change and building an entirely new infrastructure only for renewable energies does not seem economically feasible today while CO2 drives global warming, a more realistic solution needs to be found.

Microbial Power-to-Gas could be a bridging technology that integrates renewable energy into the existing fossil fuel in­frastructure. It reaches break even in less than 2 years if certain preconditions are met. This is ac­complished by integrating methane produced from renewable energy into the current oil and gas pro­ducing infrastructure. The principal idea is to use carbon instead of metals as energy carrier because of its high energy density when bound to hydrogen. The benefits are:

  • High energy density of 180 kWh kg−1 methane
  • Low investments due to existing infrastructure (natural gas, oilfield equipment)
  • Carbon is not a limited resource
  • Low CO2 footprint due to CO2 recycling
  • Methane is a transportation fuel
  • Methane is the energy carrier for the Haber-Bosch process
  • Inexpensive catalysts further reduce initial investments
  • Low temperatures due to bio-catalysis
  • No toxic compounds used
  • No additional environmental burden because existing oilfields are reused

The solution

Methane can be synthesized by microbes or chemically. Naturally, methane is produced by anaerobic (oxygen-free) microbial biomass decomposition. The energy for biomass synthesis is provided by sun­light or chemical energy like hydrogen. In the case of methanogens (methane producing microbes), energy is harvested after CO2 and hydrogen were re­leased from biomass de­composition following a 1-to-4 stoichiometry:

CO2 + 4 H2 → CH4 + 2 H2O

Without microbes, methane is produced by the Nobel-prize winning Sabatier reaction and several attempts are currently underway to use it on industrial scale. It is necessary to split water into hydrogen and use this to re­duce CO2 in the gas phase. A major drawback of the Sabatier reaction is the need for high tempera­tures around 385ºC, and a nickel catalyst that becomes quickly spent. Methanogens use iron-nickel enzymes called hydro­genases to harvest energy from hydrogen, but do so at ambient tempera­tures.

To produce abiotic hydrogen, water is split using precious metal catalysts. Microbes split water using hydrogenases in reverse direction and the produced hydro­gen is oxidized by methanogens that grow in the electrolyte or on electrodes to pro­duce methane⁠. This reaction oc­curs at the correct 1-to-4 stoichiometry⁠ at potentials that are near to the theoretical hydro­gen production potential of −410 mV obtained from the Nernst equation in neutral aqueous solu­tions⁠. Methanogenic microorganisms are able to reduce the overpoten­tial.

Power-to-Gas concept for exhausted oilfields. Electrolysis catalyzes water splitting inside the oilfield producing methane gas and O2.

The future challenge will be to accelerate methane production rates as has been reported for a high tem­perature oilfield cul­tures⁠. Besides increasing the temperature, the most obvious solution is to use a higher reactive surface and bringing both electrodes closer together. Using carbon brushes that are poor hydrogen catalysts but provide a higher sur­face for microbial attachment is one possibility. Methane production correlates with microbial cell numbers in the reactors.

The number of methanogens in microbial electrolysis reactors correlates with the electrode surface.

To overcome the problem of expensive carbon (and also steel) brushes for large scale applications,exhausted gas and oilfields could be used. They provide a high surface area and are usually eco­nomic liabili­ties and not assets. Methano­gens inhabit oilfields where they carry out the final step in anaero­bic petroleum degradation⁠. Hence, oilfields can be seen as bioreactors at geological scale. Geological formations provide ideal con­ditions for produc­ing, storing and ex­tracting methane.

Open questions and potential solutions

Oilfield porespace volume

The Californian Summerland oilfield, for instance, has been abandoned and extensively studied in the past. It produced 27 billion barrels of oil and 2.8 billion m3 methane during its lifetime of 90 years. This maximum load of 3.5 billion m3 left the same volume of porespace filled with seawater behind. Only 2% of these pores are larger than 50 µm, which is necessary for microbial growth assuming dimensions of 1 x 2 µm of a methanogen cell. Experiments showed that the resulting 70 million m3 accessible porespace have a storage capacity of 35,000 TW.  That is a lot of methane assuming a solubility of 0.74 kg methane m−3 seawater at 500 m water depth⁠. All German off-shore windfarms together have a capacity of 7,000 MW. Obviously, the limiting factor is not the volumet­ric storage capacity of an oilfield.

Microbial methane production rates

But how fast can microbes produce methane in an hypothetical oilfield? Under optimal conditions, methanogens that grow on electrodes (typically the genus Methanobacterium or Methanobrevibacter) can produce methane at a rate of 100-200 nmol ml−1 day−1 (equals 2.24-4.48 ml l−1 day−1) depending on catalyst and potential. Using a produc­tion rate of 15 J ml−1 day−1 of methane (190 nmol ml−1 day−1), the en­tire microbially accessi­ble oilfield (2%) has a ca­pacity of 3.6 mil­lion MBtu per year. Mi­crobes would theoretical­ly consume 1 TWh per year for 3.6 mil­lion MBtu meth­ane pro­duction if there were no losses and elec­trical power is translate­d into methane 1-to-1. A power genera­tor of 121 MW would be suffi­cient to supply the entire oil­field at these rates. However, all Ger­man off-shore wind­farms produce 7,000 MW mean­ing that only 3% off-peak power can be cap­tured by our ex­ample oilfield. There­fore, the catalytic sur­face and activity must be in­creased to accel­erate methane conversion rates.

Since methanogens produce methane from hydrogen, not only the 2% porespace big enough for cells can be used resulting in an increased catalytic surface to nearly 60%. A hydrogen cata­lyst needs to be found that does not out-pace methanogen growth to keep the reservoir pH within the limits of 6-8 re­quired for methanogen growth. This hydrogen catalyst must be cheap and render an oilfield electrically conductive. A chemical formulation that mimics microbial hydrogen catalysis could be used. It has the potential to turn a non-conductive and non-catalytic oilfield into a con­ductive hydrogen catalyst sufficient to sustain methane produc­tion needed to store all of Germany’s electricity produced by off-shore wind­farms. This catalyst is solu­ble in water when inactive. To become active, it coats mineral surfaces by precipitation that can be triggered by indigenous microbes or by electrical polarization. The investment would be $2.3 mil­lion per MW storage capaci­ty ($16 bil­lion for the entire 7,000 MW). Due to microbial growth, the cat­alytic activity of the system improves dur­ing operation and there is no need for the second component if an immediate production is not crucial. The investments made on the cathode side would then be as low as $600 per MW ($4.2 million for 7,000 MW).

Anodes

As the cathodic side of the reaction can be excluded as limiting factor, the anode needs to be de­signed. Several commercially available anodes such as mixed metal oxides (up to 750 A m−2) with platinum on carbon black or niobium anodes (Pt/C, 5-10 kA m−2) could be used. Anodes based on platinum are the most cost-efficient material available on the market. Invest­ments made for Pt/C (10%, 6 mg cm−2) anodes will amount to $50,000 per MW ($350 million for 7,000 MW). How­ever, the exact amount of Pt needed for the reaction still needs to be evaluated in an experiment be­cause the corrosion rate at 2 V cell voltage is unknown. An often cited value for the life­time of fuel cells is 5,000 hours and is used here to determine the costs per kWh. For 5,000 hours life­time, the costs per kWh will be at the targeted limit of $0.01 but may be well below that because Pt/C anodes can be re­cycled and the Pt load may be reduced to 3 mg cm−2 (5%). Alternatively, steel anodes (SS316, 2.5 kA m−2, $54,000 per MW) can be used but it is unclear when steel anodes fail to elec­trolyze. In conclusion, the anodic side is the cost-driving factor. Hope­fully, better water splitting anodes will lower these costs in future.

Cost estimation summary

Windfarms

Already in place

CO2 injection

Already occurred

Natural gas capturing equipment

Already in place

Microbial seed

Wastewater from oil rig

Cathode costs

$600 MW1

Anode costs

$50,000 MW1

Electrolyte (seawater)

Free

Total (>5,000 hours anode lifespan)

<$0.01 kWh1

Energy and conversion efficiencies

The whole cell voltage for microbial power-to-gas reactions varies from 0.6 to 2.0 V, depending on ca­thodic rates, anodic corrosion and the presence of a membrane. Higher voltages will accelerate an­ode corrosion, again, making anodes the limiting factor. As the voltage decreases, methane production rates become slower but also more efficient. The voltage also depends on the pH of the oil­field. An oil­field that underwent CO2 injection as enhanced recovery method will have a low pH, provid­ing better condi­tions for hydrogen production but not for microbial growth and must be neutralized using seawa­ter. As stated above, the oilfield, being the cathode, is not limiting the the sys­tem. The use of Pt/C an­odes eliminates the overpotential problem on the anode side. Hence, we can assume an ideal system that splits water at 1.23 V. However, the voltage is often 2 V due to anode and cathode overpotentials. Optimized cul­tures and cathodes produce about 190 nmol ml−1 day−1 methane which equals 0.15 J ml−1 day−1 using the energy of combustion of 0.8 MJ mol−1. The same electrolysis cell consumes 0.2 mW at a cell voltage of 2 V which equals 0.17 J ml−1 day−1 and the resulting energy effi­ciency is 91%. The anodes can be simple carbon brushes and the two cham­bers of the cell are separated by a Nafion™ membrane. The system can still be optimized by using Pt/C anodes and by avoiding mem­branes.

The overall electricity-methane-electricity efficiency also depends on the consumption side efficiency where methane is used in com­bustion engines and gas fired power plants. Such power plants fre­quently operate at efficiencies of 40- 60%. Assuming a reasonable power efficiency of 80% (see above), the overall electrical power recov­ery using gas fired power plants will be up to 50%. Besides the high efficiency of gas fired power plants, they are also easy to build and therefore contribute the a better power grid efficiency. Coal fired power plants can be upgraded to gas fired power plants.

Experimental approach

The conversion efficiencies of charge (Coulombs) transported across the circuit are usually between 70-100% in these systems depending on the electrode material⁠. Another efficien­cy limitation could arise from mass transport inhibition. Mass transport can be improved by pump­ing electrolyte adding more costs for pumping which still have to be de­termined. However, since most oil­fields undergo seawater injection for enhanced oil recovery the addi­tional cost may be negligi­ble. The total efficiency has yet to be determined in scale-up experiments and will depend on the fac­tors men­tioned above.

The reactor simulates oilfield conditions using sand as filling material under continuous flow of electrolyte.

Controlling the pH is crucial. Alkaline pHs significantly impede hydrogen pro­duction and therefore methanogenesis. This can be addressed by a software that monitors the pH and adjusts the po­tential accordingly. Addition of acids is not desired as this drives the costs. The software can also act as potentiostat that then fully controls the methane production process. To test the process under more realistic conditions, a drill core from an oilfield must be obtained.

Results show methane production in the simulation reactor. The appearance of methane in the anode compartment was a result of flow from the cathode to the anode, carrying produced methane with it.

Return of investment of the microbial power-to-gas process

The the microbial power-to-gas process in unproductive oilfields is economically superior to all other storage strategies because of the low start-up and operating costs. This is achieved because the ma­jor investments are the installation of oil- and gas production equipment and renewable power plants which are already in place as a precondition. These investments break even in a short amount of time.

But how can the microbial Power-to-Gas process accelerate the return of investment in renewable en­ergy? Only 8 out of 28 active off-shore windfarms reported their investment costs. These 8 produce roughly half the overall power of 1,600 MW corresponding to $7 billion. While the maximum production of an oilfield with unlimited supply of elec­tricity would yield hypothetical 3.6 million MBtu natural gas per year resulting a return of $13 million per year the real production is limited by off-peak power gener­ated by re­newable energy production. Assuming that the maximum annual methane production corresponds to 10% excess electrical power, $15 million per year can by gener­ated by selling 4.3 million MBtu meth­ane per year on the market. These are $15 million that are not lost during off-peak shutdowns. Clearly, this conservative estimate can help to compensate the invest­ment in renewable energy earlier. It also decreases the investment risk because the investment calcu­lations for new wind farms can be made on a more reliable basis.

In the example using all German windfarms (7,000 MW) this compensation roughly doubles. Using the $60 million generated by methane sales per year, the investment of $4 million for the cathodic cata­lyst and the $36 million for the Pt/C anodes are compensated for within less than a year. No other invest­ments are required because the target oilfield already produced oil and gas and all necessary installa­tion are in working condition. The target oilfield is swept using seawater as sec­ondary extraction method. Electrical installations are in place for cathodic protection of production equipment in order to prevent microbial corrosion, which, however, may need to be upgraded to pass the now higher power densities. Moreover, CO2 is used from CO2 injection as tertiary enhanced oil re­covery method. Only the pH may then need to be adjusted to sustain life by sweeping with seawater.

And this is not the end of oilfield storage capacity. In theory, an oilfield can store the entire amount of renewable energy produced in one year globally, allowing more than enough head room for future development and CO2 sequestration.

Posted on

Promising hydrophilic membranes with fast and selective ion transport for energy devices

In addition to well-established Nafion™ membranes which are currently the best trade-off between high-performance and cost in proton exchange fuel cells (PEM), methanol fuel cells, electrolysis cells etc. As our energy resources are diversifying, there is a growing demand for efficient and selective ion-transport membranes for energy storage devices such as flow batteries.

A Sumitomo Electric flow battery for energy storage of a solar PV plant. (Photo: Sumitomo Electric Co.)

Redox flow batteries – the energy storage breakthrough

The high demand for a reliable and cost-effective energy storage systems is reflected in the increased diversity of technologies for energy storage. Among different electrochemical storage systems, one of the most promising candidates are redox-flow batteries (RFBs). They could meet large-scale energy storage requirements scoring in high efficiency, low scale-up cost, long charge/discharge cycle life, and independent energy storage and power generation capacity.

Since this technology is still young, the development of commercially and economically viable systems demands:

  • improvement of the core components e.g. membranes with special properties,
  • improvement of energy efficiency
  • reduction in overall cost system.

Meeting demands for redox flow batteries

Two research teams in the United Kingdom, one from Imperial College and the other from the University of Cambridge, pursued a new approach to design the next generation of microporous membrane materials for the redox-flow batteries. They recently published their data in the well renown journal Nature Materials. Well-defined narrow microporous channels together with hydrophilic functionality of the membranes enable fast transport of salt ions and high selectivity towards small organic molecules. The new membrane architecture is particularly valuable for aqueous organic flow batteries enabling high energy efficiency and high capacity retention. Importantly, the membranes have been prepared using roll-to-roll technology and mesoporous polyacrylonitrile low-cost support. Hence, these innovative membranes could be cost effective.

As the authors reported, the challenge for the new generation RFBs is development of low-cost hydrocarbon-based polymer membranes that features precise selectivity between ions and organic redox-active molecules. In addition, ion transport in these membranes depends on a formation of the interconnected water channels via microphase separation, which is considered a complex and difficult-to-control process on molecular level.

The new synthesis concept of ion-selective membranes is based on hydrophilic polymers of intrinsic microporosity (PIMs) that enable fast ion transport and high molecular selectivity. The structural diversity of PIMs can be controlled by monomer choice, polymerization reaction and post-synthetic modification, which further optimize these membranes for RFBs.

Two types of hydrophilic PIM have been developed and tested: PIMs derived from Tröger’s base and dibenzodioxin-based PIMs with hydrophilic and ionizable amidoxime groups.

The authors consider their approach innovative because of

  1. The application of PIMs to obtain rigid and contorted polymer chains resulting in sub-nanometre-sized cavities in microporous membranes;
  2. The introduction of hydrophilic functional groups forming interconnected water channels to optimize hydrophilicity and ion conductivity;
  3. The processing of the solution to produce a membrane of submicrometre thickness. This further reduces ion transport resistance and membrane production costs.

Ionic conductivity has been evaluated by the real-time experimental observations of water and ion uptake. The results suggest that water adsorption in the confined three-dimensional interconnected micropores leads to the formation of water-facilitated ionic channels, enabling fast transport of water and ions.

The selective ionic and molecular transport in PIM membranes was analyzed using concentration-driven dialysis diffusion tests. It was confirmed that new design of membranes effectively block large redox active molecules while enabling fast ion transport, which is crucial for the operation of organic RFBs.

In addition, long-term chemical stability, good electrochemical, thermal stability and good mechanical strength of the hydrophilic PIM membranes have been demonstrated.

Finally, it has been reported that the performance and stability tests of RFBs based on the new membranes, as well as of ion permeation rate and selectivity, are comparable to the performances based on a Nafion™ membranes as benchmark.

(Mima Varničić, 2020, photo: Wikipedia)

Posted on

Energy storage in The Netherlands

Electricity Portfolio

In our previous blog post of the Frontis series on European energy storage markets we took a closer look at Spain. In our final post in this series we show where The Netherlands are positioned. The Netherlands are one of only two net gas exporting countries in the EU, along with Denmark. The domestic energy consumption reflects the abundance of the resource, with over 50% of electricity generated in the Netherlands coming from natural gas. With coal representing another 31%, the Netherlands are heavily centered around fossil-based electricity. Renewables represent less than 10% of electricity generated.

By 2020, renewable energy is to represent 14% of the entire Dutch energy supply, as mandated by the EU in the Renewable Energy Directive (2009/28/EC). This corresponds to an electricity sector with over 30% renewable energy generation.

There has been criticism directed towards the Netherlands for the progress made. According to projections in their 2009 National Renewable Energy Action Plan, the Netherlands should have reached nearly 20% renewable electricity in 2014. This lackluster progress prompted a statement from the EU Commission in its 2017 Second Report on the State of the Energy Union, where the EU Commission stated the Netherlands were the only member state to not exhibit average renewable energy shares which were equal or higher than their corresponding action plan trajectories in 2013/2014.

The EU Commission also stated that the Netherlands was one of the three countries (others: France, Luxembourg) with the biggest efforts required to fill 2020 targets.

Existing Energy Storage Facilities

To date, the Netherlands has almost 20 MW of energy storage capacity either operating (14 MW), contracted (1 MW), or under construction (4 MW).

All energy storage facilities in the Netherlands are electro-chemical, with the exception of the contracted 1 MW Hydrostar underwater compressed air energy storage project in Aruba (Caribbean). Hydrostar is a Canadian company specializing in underwater compressed air energy storage technologies.

The vast majority of the 20 MW of installed energy storage capacity in the Netherlands is spread over just three facilities: the Netherlands Advancion Energy Storage Array (10 MW Li-ion), the Amsterdam ArenA (4 MW Li-ion), and the Bonaire Wind-Diesel Hybrid project (3 MW Ni-Cad battery).

The Netherlands Advancion Energy Storage Array was commissioned in late 2015 and provides 10 MWh of storage to Dutch transmission system operator TenneT. The project, which represents 50% of all Dutch energy storage capacity, provides frequency regulation by using power stored in its batteries to respond to grid imbalances.

The 4 MW Amsterdam ArenA lithium-ion project was commissioned 2017 for PV integration and back up power purposes. The 3 MW Bonaire Wind-Diesel Hybrid project is a battery array located on the Dutch Caribbean island of Bonaire and used as a buffer between intermittent wind energy and the diesel-generation stations on the island.

The remaining 3 MW of Dutch energy storage projects are spread over 21 sub-100 kW facilities, mainly geared towards electric vehicle (EV) charging. Mistergreen, a leading developer of EV charging stations in the Netherlands has constructed 750 kW of LI-ion energy storage arrays at its various electric vehicle charging stations.

Energy Storage Market Outlook

Gearing up for significant market growth for electric vehicles in the Netherlands, there has been a considerable amount of effort to expand the country’s network of quick charging stations. This trend will have to continue in order meet the demand for the 1-million electric vehicles expected in the Netherlands by 2025, so one could expect that there will be large growth in the sub-100 kW Li-ion stations that have already started popping up around the country.

There is little information available regarding the need for large-scale energy storage but the overall need is likely low due to the low penetration of renewables in the electricity sector. However, there is significant focus on energy efficient/independent/self-sufficient housing.

Like Italians, the Dutch are very accustomed to using natural gas in their homes. This, coupled with the push for energy self-sufficient housing could present a unique market for residential power-to-gas systems in the Netherlands.

(Jon Martin, 2020, photo: Fotolia)

Posted on

High-performance biomass molecule for better Diesel fuel

In our previous blog posts we have discussed resource recovery from waste related to the wastewater treatment and showed improved and enforced regulations have a positive impact on water quality and public health. Now we show that clever catalytic processes can be used to extract valuable commodities from waste agricultural products.

Low-cost waste biomass can serves as renewable source to produce a sustainable alternative to fossil carbon resources in order to meet the need for the environmentally friendly energy. For example, the C2 and C4 ethers derived from carboxylic acids obtained from biomass are promising fuel candidates. It has been reported, that when using ethers biofuel parameters such as ignition quality and sooting have significantly improved compared to commercial petrodiesel (>86% yield sooting index reduction). Ignition quality (cetane number) was improved by more than 56%.

The scientists from National Renewable Energy Laboratory, together with their colleagues from Yale University, Argonne National Laboratory, and Oak Ridge National Laboratory are working on a joint project with the goal of co-optimization of fuels and engines. The research focuses on improving fuel economy and vehicle performance while at the same time reducing emissions through identification of blendstock derived from biomass.

In their recent article, published in the renown journal PNAS, a novel molecule, 4-butoxyheptane, has been isolated in a high-yielding catalytic process from lignocellulosic biomass. Due to its high oxygen content, this advantageous blendstock can improve the performance of diesel fuel by reducing the intrinsic sooting tendency of the fuel upon burning.

The research team has reported a “fuel-property-first” approach in order to accelerate the development process of producing suitable oxygenate diesel blendstocks.

This rational approach is based on following steps:

  1. Fuel Property Characterization – includes mapping and identification of accessible oxygenates products; predicting fuel properties of those products a priori by computationally screening
  2. Production process – development of the conversion pathway starting from biomass. Includes continuous, solvent-free synthesis process based on a metal/acid catalyst on a liter-scale production of the chosen compound
  3. Testing and analysis – with the goal to validate and compare fuel property measurements against predictions

Fuel properties of target oxygenates that have been investigated are related to the health- and safety- aspects such as flash point, biodegradation potential, and toxicity/water solubility, as well as market and environmental aspects such as ignition quality (cetane number), viscosity, lower heating value and sooting potential reduction with oxygenated blendstocks. As a result, 4-butoxyheptane, looked as the most promising molecule to blend with and improve traditional diesel. It has been shown, that the fuel property measurements largely agreed with predictive estimations, validating accuracy of the a priori approach for blendstock selection.

The mixture at 20-30% blend of 4-butoxyheptane molecule into diesel fuel has been suggested as favorable. The improvement in autoignition quality as well as significant reduction of yield sooting index from 215 to 173 (20% reduction) demonstrates that the incorporation of this molecule could improve diesel emission properties without sacrificing performance. In terms of flammability, toxicity, and storage stability, the oxygenate fuel has been evaluated to be at low-risk.

Life-cycle analysis show that this mixture could be cost-competitive and have the potential in significant greenhouse gas reductions (by 50 to 271%) in comparison to petrodiesel.

As research is a perpetual process, more of it is necessary and should include testing of the bioblendstock in an actual engine and production of the biofuel in an integrated process directly from biomass.

(Mima Varničić, 2020, photo: Pixabay)

Posted on

Energy storage in Spain

Spain’s Energy Landscape

In our previous post we reported on the prospects of energy storage in Denmark. Now we are moving back south. While it is commonly assumed that solar is the key driver of renewable energy production in Spain, wind represents more than three times the energy production than solar − Spain is a world leader in wind power. In 2014, Spain had the 4th most installed wind capacity, globally and wind energy accounted for 18% of total Spanish electricity production in 2015. Gas and coal still make up over one-third of electricity production in Spain.

Electricity Production in Spain (Source: International Energy Agency, 2015)

While fuel oil is still used for electricity in Spain, it should be noted that this is exclusive to the non-peninsular areas of Spain (i.e. Canary Islands, Balearic Islands, Cueta, Melilla, and several other small islands).

By 2020, 20% of Spain’s final energy consumption must come from renewable energy sources – as mandated in the 2009 EU Directive 28. However, Spain will likely miss this target. In the early 2000’s Spain was a global leader in renewable energy. For example, in 2005 Spain became the first country to mandate PV installations on all new buildings and ranked 5th globally in total renewable energy investments. However the renewable energy industry has stagnated significantly over the past decade. Unfortunately, Spain, which drove the global market in 2008, has virtually disappeared from the PV picture due to retroactive policy changes and new tax on self-consumption.

The policy changes and self-consumption taxes allude to the Royal Decree 900/2015 on self-consumption, a law enacted by the Spanish government in October 2015, which aims to financially penalize the self-consumption of electricity. Under the new law solar PV producers (residential PV owners, for example) are required to not only pay a tax on the energy they self-consume, but also must pay the same transmission & distribution fees they would have paid on an equivalent amount of electricity purchased from the grid. In addition to these charges and taxes, owners of systems 100 kW and smaller – most residential system owners – are prohibited from selling excess electricity from the grid. Instead, they must give it to the grid for free. Furthermore, this law is retroactive; meaning existing PV systems must comply or face a penalty. Penalties under the self-consumption law range from as low as EUR 6-million up to a maximum of EUR 60-million – about twice the fine for leaking radioactive waste. The Spanish government see’s self-consumption as a risk to tax revenues at the current high electricity prices.

Spain is still the world leader in concentrated solar power capacity (2.5 MW). However, no new plants were constructed since and there are currently no new plants under construction or in planning.

Energy Storage Market Outlook – Spain

Although initial drafts of the “self-consumption” law had strict provisions against battery storage systems, the final version does permit energy storage systems – although under conditions that make them impractical. While owners of solar-plus-storage systems are subject to additional charges, they also cannot reduce the amount of power that they have under contract from their utility company.
At this point in time, it appears as if the self-consumption law has effectively halted any investment in renewable energy and/or energy storage projects in Spain.

(Jon Martin, 2019; Photo: Wikipedia)

Posted on

Global wastewater resources estimated

In our last post on water quality in China, we pointed out a study that shows how improved wastewater treatment has a positive effect on the environment and ultimately on public health. However, wastewater treatment requires sophisticated and costly infrastructure. This is not available everywhere. However, extracting resources from wastewater can offset some of the costs incurred by plant construction and operation. The question is how much of a resource is wastewater.

A recent study published in the journal Natural Resources Forum tries to answer that question. It is the first to estimate how much wastewater all cities on Earth produce each year. The amount is enormous, as the authors say. There are currently 380 billion cubic meters of wastewater per year worldwide. The authors omitted only 5% of urban areas by population.

The most important resources in wastewater are energy, nutrients like nitrogen, potassium and phosphorus, and the water itself. In municipal wastewater treatment plants they come from human excretions. In industry and agriculture they are remnants of the production process. The team calculated how much of the nutrient resources in the municipal wastewater is likely to end up in the global wastewater stream. The researchers come to a total number of 26 million tons per year. That is almost eighty times the weight of the Empire State Building in New York.

If one would recover the entire nitrogen, phosphorus and potassium load, one could theoretically cover 13% of the global fertilizer requirement. The team assumed that the wastewater volume will likely continue to increase, because the world’s population, urbanization and living standards are also increasing. They further estimate that in 2050 there will be almost 50% more wastewater than in 2015. It will be necessary to treat as much as possible and to make greater use of the nutrients in that wastewater! As we pointed out in our previous post, wastewater is more and more causing environmental and public health problems.

There is also energy in wastewater. Wastewater treatment plants industrialized countries have been using them in the form of biogas for a long time. Most wastewater treatment plants ferment sewage sludge in large anaerobic digesters and use them to produce methane. As a result, some plants are now energy self-sufficient.

The authors calculated the energy potential that lies hidden in the wastewater of all cities worldwide. In principle, the energy is sufficient to supply 500 to 600 million average consumers with electricity. The only problems are: wastewater treatment and energy technology are expensive, and therefore hardly used in non-industrialized countries. According to the scientists, this will change. Occasionally, this is already happening.

Singapore is a prominent example. Wastewater is treated there so intensively that it is fed back into the normal water network. In Jordan, the wastewater from the cities of Amman and Zerqa goes to the municipal wastewater treatment plant by gravitation. There, small turbines are installed in the canals, which have been supplying energy ever since their construction. Such projects send out a signals that resource recovery is possible and make wastewater treatment more efficient and less costly.

The Frontis technology is based on microbial electrolysis which combines many of the steps in wastewater treatment plants in one single reactor, recovering nutrients as well as energy.

(Photo: Wikipedia)

Posted on

China has improved inland surface water quality

During the last decades, China has achieved rapid development in technology and economics, however at a huge environmental cost. The deterioration of inland surface water quality is considered one of the most serious environmental threats to ecosystem and ultimately public health.

Since 2001, China made major efforts to tighten the application of environmental rules in order to stop water pollution emitted by cities, farm and industry. According to the government’s “10th National Five-Year Plan”, large investments were made for pollution control and wastewater discharge regulation systems.

Small research studies showed that with this campaign, Chinese’s lakes and rivers got cleaner. Since then water quality has improved significantly − however, other parts of country still have problems with polluted water.

Now, a team of researchers of the at the Chinese Academy of Sciences in Beijing, has published one of the most comprehensive national investigation of China’s surface water quality in the renown journal Science. The researchers investigated all regions of the country to learn how surface water responds to multiple driving forces over time and space. Their report covers the assessment of water quality by means of three parameters: dissolved oxygen level (DO), chemical oxygen demand (COD) and ammonium nitrogen (N) in inland surface waters. They performed monthly site-level measurements at major Chinese rivers and lakes across the country between 2003 and 2017.

Due to regional variations in China’s inland water quality as well as the dynamics in multiple anthropogenic pollution sources, such studies are crucially important to identify the necessary regulation measures and water quality improvement policies adapted to ecosystem sustainability at all diverse country regions.

The results show that during the past 15 years, annual mean pollution concentration has declined across the country at significant linear rates or was maintained at acceptable levels. Consequently, the annual percentage of water quality have increased by 1.77% for COD, 1.83% for N and 1.45% for DO per year. While China has not yet implemented environmental water standards, the study shows that China’s water quality is improving nonetheless.

The best news is that the notoriously high pollution levels have declined as cities and industry have worked to clean up and reduce their discharges. According to the authors, the most visible alleviation was noticed in northern China, while in the western region of the country water quality remained at their low pollution level throughout the observation period. The reason is likely that pollution is caused by human activity, of which there is less in those parts of the country.

Despite large efforts toward decreased pollution discharges, urban areas are still considered as the major pollution centers. These areas face additional pressure due to the constant migration and fast urbanization of the rural regions. Especially in northern China, with high-density human activity and exploding urbanization, achieving and maintaining a clean environment is a permanent struggle.

To further reduce pollution and improve water quality, the authors recommend that future activities focus on water management systems and the water pollution control. For both, the central government issued guidelines to control and improve water use and pollution discharge at regional and national levels for 2020 and 2030.

At Frontis Energy, we certainly support activities in China that help improving the countries water quality and public health. The Frontis technology gives its user an incentive to to clean wastewater before discharge by extracting its energy. Our patent pending solutions are based on microbial electrolysis which helps to extract energy from wastewater and apply in particular to China.

Mima Varničić, 2020

(Photo: Gil Dekel / Pixabay)

Posted on

Energy storage in Denmark

Denmark’s Electricity Portfolio

In our last post of our blog series about energy storage in Europe we focused on Italy. Now we move back north, to Denmark. Unsurprisingly, Denmark is known as a pioneer of wind energy. Relying almost exclusively on imported oil for its energy needs in the 1970s, renewable energy has grown to make up over half of electricity generated in the country. Denmark is targeting 100 percent renewable electricity by 2035, and 100 percent renewable energy in all sectors by 2050.

Electricity Production in Denmark (2016)

Proximity to both Scandinavia and mainland Europe makes exporting and importing power rather easy for the Danish system operator, Energinet.dk. This provides Denmark with the flexibility needed to achieve significant penetration of intermittent energy sources like wind while maintaining grid stability.

While the results to-date have been promising, getting to 100 percent renewable energy will still require a significant leap and the official policies that Denmark will use to guide this transition have yet to be delivered. However, there has been some indication at what the ultimate policies may look like. In their report Energy Scenarios for 2020, 2035 and 2050, the Danish Energy Agency outlined four different scenarios for becoming fossil-free by 2050 while meeting the 100 percent renewable electricity target of 2035. The scenarios, which are primarily built around deployment of wind energy or biomass, are:

  • Wind Scenario – wind as the primary energy source, along with solar PV, and combined heat and power. Massive electrification of the heat and transportation sectors.
  • Biomass Scenario – less wind deployment that in the wind scenario, with combined heat and power providing electricity and district heating. Transportation based on biofuels.
  • Bio+ Scenario – existing coal and gas generation replaced with bioenergy, 50% of electricity from wind. Heat from biomass and electricity (heat pumps).
  • Hydrogen Scenario – electricity from wind used to produce hydrogen through electrolysis. Hydrogen used as renewable energy storage medium, as well as  transportation fuel. Hydrogen scenario would require massive electrification of heat and transport sectors, while requiring wind deployment at faster rate than the wind scenario.

Agora Energiewende and DTU Management Engineering, have postulated that this scenario report does in fact show that transitioning the Danish energy sector to 100 percent renewables by 2050 is technically feasible under multiple pathways. However, Danish policy makers must decide before 2020 whether the energy system will evolve into a fuel-based biomass system, or electricity-based wind energy system (they must decided which of the four scenarios to pursue).

Energy Storage Facilities – Denmark

Regardless of which energy policy scenario Denmark decides to pursue, energy storage will be a central aspect of a successful energy transition. There are currently three EES facilities operating in Denmark, all of which are electro-chemical (batteries). A fourth EES facility – the HyBalance project – is currently under construction and will convert electricity produced by wind turbines to hydrogen through PEM electrolysis (proton exchange membrane).

Project Name

Technology Type

Capacity (kW)

Discharge (hrs)

Status

Service Use

RISO Syslab Redox Flow Battery Electro-chemical Flow Battery 15 8 Operational Renewables Capacity Firming
Vestas Lem Kær ESS Demo 1.2 MW Electro-chemical Lithium-ion Battery 1,200 0.25 Operational Frequency Regulation
Vestas Lem Kær ESS Demo 400 kW Electro-chemical Lithium-ion Battery 400 0.25 Operational Frequency Regulation
HyBalance Hydrogen Storage Hydrogen Power-to-Gas 1,250 Operational Renewables integration
BioCat Power-to-Gas Methane Storage Methane Power-to-Gas 1,000 Decommissioned Gas Grid Injection & Frequency Regulation

The HyBalance project is the pilot plant undertaking of Power2Hydrogen, a working group comprised of major industry players and academic research institutions aimed at demonstrating the large-scale potential for hydrogen from wind energy. The plant will produce up to 500 kg/day of hydrogen, used for transportation and grid balancing.

Worth noting is the decommissioned BioCat Power-to-Gas project, a pilot plant project which operated from 2014 to 2016 in Hvidovre, Denmark. The project, a joint collaboration between Electrochaea and several industry partners (funded by Energienet.dk), was a 1 MWe Power-to-Gas (methane) facility built to demonstrate the commercial capabilities of methane power-to-gas. The BioCat project was part of Electrochaea’s goal of reaching commercialization in late 2016, however, as of early 2017 no further updates have been given.

Energy Storage Market Outlook − Denmark

The energy storage market in Denmark will be most primed for growth should policy follow the Hydrogen Scenario, where massive amounts of hydrogen production will be needed to eliminate the use of fossil fuels across all sectors.

Renewable energy produced gases (hydrogen, methane) have the potential to balance the electricity grid in two primary ways: balancing supply and demand (“smart grid”), and balancing through physical storage. The smart grid, an intelligent electricity grid where production and consumption are administered centrally, presents significant opportunity for electrolysis technologies as short-term “buffer” storage (seconds to minutes). Bulk physical storage of renewable energy produced gases can act as a longer-term storage solution (hours, days, weeks, months) to help maintain flexibility in a fossil-free energy grid (The Danish Partnership for Hydrogen and Fuel Cells).

Without the hydrogen scenario, the potential for hydrogen-based energy storage in Denmark will be limited. In their 2016 report “potential of hydrogen in energy systems”, the Power2Hydrogen working group concluded that:

  • hydrogen electrolysers would not provide any significant upgrade on flexibility for renewables integration over today’s sufficiently flexible system, and;
  • by 2035, with the increased wind production, it was concluded that hydrogen electrolysers would in fact improve system flexibility, allowing for even more extensive penetration of wind energy in the system.

The potential for renewable energy produced gases in Demark is extremely high. There is a very distinct possibility that power-to-gas type of systems will be the linchpin of Denmark’s energy transition. While there appears to be little opportunity in the short-term, there will be extensive opportunity in the medium-to-long-term should the official energy transition policy focus on the hydrogen scenario, or a similar renewable gas based policy.

Read here our next post on the prospects for energy storage in Spain.

(Jon Martin, 2019)

Posted on

Future challenges for wind energy

Many people believe that there is no need for improvement because wind turbines have been working for decades. Wind energy has the potential to be one of the world’s cheapest energy sources. In a recent article in the Science magazine, major challenges have been addressed to drive innovation in wind energy. Essentially three directions were identified:

  1. The better use of wind currents
  2. Structural and system dynamics of wind turbines
  3. Grid reliability of wind power

In order to make better use of wind currents, the air mass dynamics and its interactions with land and turbines must be understood. Our knowledge of wind currents in complex terrain and under different atmospheric conditions is very limited. We have to model these conditions more precisely so that the operation of large wind turbines becomes more productive and cheaper.

To gain more energy, wind turbines have grown in size. For example, when wind turbines share larger size areas with other wind turbines, the flow changes increasingly.

As the height of wind turbines increases, we need to understand the dynamics of the wind at these heights. The use of simplified physical models has allowed wind turbines to be installed and their performance to be predicted across a variety of terrain types. The next challenge is to model these different conditions so that wind turbines are optimized in order to be inexpensive and controllable, and installed in the right place.

The second essential direction is better understanding and research of the wind turbine structure and system dynamics . Today, wind turbines are the largest flexible, rotating machines in the world. The bucket lengths routinely exceed 80 meters. Their towers protrude well over 100 meters. To illustrate this, three Airbus A380s can fit in the area of ​​one wind turbine. In order to work under increasing structural loads, these systems are getting bigger and heavier which requires new materials and manufacturing processes. This is necessary due to the fact that scalability, transport, structural integrity and recycling of the used materials reach their limits.

In addition, the interface between turbine and atmospheric dynamics raises several important research questions. Many simplified assumptions on which previous wind turbines are based, no longer apply. The challenge is not only to understand the atmosphere, but also to find out which factors are decisive for the efficiency of power generation as well as for the structural security.

Our current power grid as third essential direction is not designed for the operation of large additional wind resources. Therefore, the gird will need has to be fundamentally different then as today. A high increase in variable wind and solar power is expected. In order to maintain functional, efficient and reliable network, these power generators must be predictable and controllable. Renewable electricity generators must also be able to provide not only electricity but also stabilizing grid services. The path to the future requires integrated systems research at the interfaces between atmospheric physics, wind turbine dynamics, plant control and network operation. This also includes new energy storage solutions such as power-to-gas.

Wind turbines and their electricity storage can provide important network services such as frequency control, ramp control and voltage regulation. Innovative control could use the properties of wind turbines to optimize the energy production of the system and at the same time provide these essential services. For example, modern data processing technologies can deliver large amounts of data for sensors, which can be then applied to the entire system. This can improve energy recording, which in return can significantly reduce operating costs. The path to realize these demands requires extensive research at the interfaces of atmospheric flow modeling, individual turbine dynamics and wind turbine control with the operation of larger electrical systems.

Advances in science are essential to drive innovation, cut costs and achieve smooth integration into the power grid. In addition, environmental factors must also be taken into account when expanding wind energy. In order to be successful, the expansion of wind energy use must be done responsibly in order to minimize the destruction of the landscape. Investments in science and interdisciplinary research in these areas will certainly help to find acceptable solutions for everyone involved.

Such projects include studies that characterize and understand the effects of the wind on wildlife. Scientific research, which enables innovations and the development of inexpensive technologies to investigate the effects of wild animals on wind turbines on the land and off the coast, is currently being intensively pursued. To do this, it must be understood how wind energy can be placed in such a way that the local effects are minimized and at the same time there is an economic benefit for the affected communities.

These major challenges in wind research complement each other. The characterization of the operating zone of wind turbines in the atmosphere will be of crucial importance for the development of the next generation of even larger, more economical wind turbines. Understanding both, the dynamic control of the plants and the prediction of the type of atmospheric inflow enable better control.

As an innovative company, Frontis Energy supports the transition to CO2-neutral energy generation.

Posted on

Turbocharged lithium batteries at high temperatures

One of the biggest hurdles for the electrification of road traffic is the long charging time for lithium batteries in electric vehicles. A recent research report has now shown that charging time can be reduced to 10 minutes while the battery is being heated.

A lithium battery can power a 320-kilometer trip after only 10 minutes of charging − provided that its temperature is higher than 60 °C while charging.

Lithium batteries that use lithium ions to generate electricity are slowly charged at room temperature. It takes more than three hours to charge, as opposed to three minutes to tank a car.

A critical barrier to rapid charging is the lithium plating, which normally occurs at high charging rates and drastically affects the life and safety of the batteries. Researchers at Pennsylvania State University in University Park are introducing an asymmetrical temperature modulation method that charges a lithium battery at an elevated temperature of 60 °C.

High-speed charging typically encourages lithium to coat one of the battery electrodes (lithium plating). This will block the flow of energy and eventually make the battery unusable. To prevent lithium deposits on the anodes, the researchers limited the exposure time at 60 °C to only ~10 minutes per cycle.

The researchers used industrially available materials and minimized the capacity loss at 500 cycles to 20%. A battery charged at room temperature could only be charged quickly for 60 cycles before its electrode was plated.

The asymmetrical temperature between charging and discharging opens up a new way to improve the ion transport during charging and at the same time achieve a long service life.

For many decades it was generally believed that lithium batteries should not be operated at high temperatures due to accelerated material degradation. Contrary to this conventional wisdom, the researchers introduced a rapid charging process that charges a cell at 60 °C and discharges the cell at a cool temperature. In addition, charging at 60 °C reduces the battery cooling requirement by more than 12 times.

In battery applications, the discharge profiles depend on the end user, while the charging protocol is determined by the manufacturer and can therefore be specially designed and controlled. The quick-charging process presented here opens up a new way of designing electrochemical energy systems that can achieve high performance and a long service life at the same time.

At Frontis Energy we also think that the new simple charging process is a promising method. We are looking forward to the market launch of this new rapid charging method.

(Photo: iStock)