Among others, the current European energy crisis by a surge in demand after the pandemic, the embargo on Russia, the reluctance of investors to finance fossil energy projects and the throttling of production by the OPEC countries. In this complex situation, European countries are forced to develop alternatives and renewable energy sources. At the same time, however, natural gas is difficult to replace in many industries. One exception is the food and beverage industry, which sits enormous untapped resources of biogas in their wastewater.
Europe is the largest cheese maker in the world. More than 9 million tons of cheese are produced annually. With every ton of cheese, 9 m³ of cheese whey remain. Despite its high nutritional value, whey is often treated like wastewater for various reasons. Yet, the very high organic load in the whey makes it difficult to treat. Wasted whey can also be used for biogas production. In addition to whey, regular wastewater is also produced by cheese makers. For example, a medium-sized cheese factory pays 1.5 million euros a year for its waste water. Reducing these costs by producing biogas would turn dairy industry wastewater into a valuable resource.
This situation is similar in many other food and beverage sectors such as breweries, distilleries, winemakers, bakeries etc. All of these sectors have high energy requirements. Renewable electrical energy cannot meet this need. The market for wastewater treatment in Europe and the US is around 12 billion euros.
Traditional wastewater treatment is a cascaded process including aeration and anaerobic sludge digestion followed by incineration. These methods often consume more than 70% of the energy in a wastewater treatment plant. If contaminants such as high-energy total organic carbon or ammonia were converted into biogas before the process, at least 80% of the energy needed for wastewater treatment could be saved. It is absurd that this energy is removed from the wastewater using even more energy.
An ever-increasing number of sewage treatment plants already recover the resources contained in their wastewater, apart from the water itself. The oldest recivered products are biogas and fertilizers made from sewage sludge. Due to its heavy metal content such as copper and mercury, sewage sludge is no longer used as fertilizer but incinerated.
Biogas is particularly popular in Europe as the produced volumes and prices are high enough to compete with natural gas. Biogas is also a green alternative to natural gas as no additional CO2 is emitted. (Hence, it is often called Renewable Natural Gas in North America.) A disadvantage of classic biogas is the CO2 and sulfide content. Another disadvantage is that anaerobic digestion is the terminal treatment step, wasting valuable wastewater resources in the preceding treatment. Finally, the size and complexity of current digestion requires significant commitment from users when it comes to capital expenditures. Most food manufacturers prefer to focus on making food rather than cleaning their wastewater.
Novel high-performance biogas reactors solve these problems through miniaturization. A 20-fold size reduction is achieved compared to conventional systems. The new technology used was developed in Japan in the early 1990s and is called microbial electrolysis. The electrolysis of wastewater is catalyzed by electroactive microorganisms on the anode (the positive electrode). The reaction products are CO2 (from organic matter) and nitrogen gas (N2 from ammonia).
Principle of a microbial electrolysis reactor. On the left anode, the organic material is oxidized to CO2. The free electrons are absorbed by the anode and transported to the cathode. Hydrogen gas (H2) is released there. CO2 and hydrogen form methane, the final microbial reaction product.
At the same time, hydrogen gas (H2) is generated at the cathode (the negative electrode). This hydrogen reacts with CO2 to form methane. The final methanation step completes the biocatalytic treatment of the wastewater. Gas grid injection is one possible use. But for cheese makers, the gas would be used on site to generate electricity and/or heat.
The reaction is accelerated using an applied voltage and is based on the laws of thermodynamics. As a result, the reactor volume can be reduced. The size reduction has several advantages. First, it makes biogas accessible in markets where it was previously not possible due to the high investment costs. Second, it enables higher throughput at a lower cost. Smaller units are mobile and can be shared, moved or rented. After all, food manufacturers want to do what they do best, which is to make food.
To reduce greenhouse gas emissions, various technologies are in development requiring the separation of mixed gases, such as CO2 and methane or CO2 and nitrogen gas (CO2/CH4 and CO2/N2). Compared to other separation technologies, polymer membranes are good candidates for industrial use. This is due to their low operating costs, high energy efficiency and simple scalability.
The gas permeability and selectivity, as well as the cost of these polymer membranes are the crucial criteria for their industrial use. These criteria are influenced by molecular order processes during polymerization at nano- and micrometer levels. However, the processes regulating the molecular order of most common membranes do not occur on these levels. Hence, there is little control over them during manufacturing. Not much is known about materials with self organizing properties and their influence on molecular order and gas separation.
Chemists at the Technical University of Eindhoven in the Netherlands examined the effects of the layer distance within the membrane and its halogenation on the gastrunge and published their results in the MDPI Membranes journal. They focused on the separation of helium, CO2 and nitrogen. The researchers used liquid crystal membranes for their investigation. Liquid crystal molecules can align in various nanostructures. These structures vary depending on the manufacturing process and can therefore be controlled. As a result, liquid crystal membranes are ideal in order to investigate the influence of nanostructures on gas separation.
A frequently used manufacturing method is to commence the self organization of the reactive liquid crystal molecules in a cell with spacers. This helps to better control the membrane thickness and alignment and ultimately control the molecular orientation. The final network of the liquid crystal molecules and their fixation in nanostructures is required to achieve mechanical strength. For example, high ordered crystal membranes (i.e. not liquid crystals) have a lower gas permeability. Nonetheless, they also are characterized by a higher selectivity for helium and CO2 compared to nitrogen.
A lamellar morphology and the flow direction of the gas also have a great influence on selectivity and permeability of the membrane. It is also known that halogen atoms such as chlorine or fluorine improve CO2 permeability and selectivity by affecting both gas solubility and diffusion.
In the presented experiments, all liquid crystal membranes with similar chemical compositions, but different halogenated alkyl chains, were aligned. The CO2 sorption and the entire gas permeation were better if their layers were further apart. The gas solubility itself had no impact. This was confirmed by the increased gas diffusion coefficients, which were also determined in the experiments.
Bulky halogens had only limited influence on gas permeability and selectivity. The CO2 permeability of all halogenated liquid crystal membranes increased due to a slightly higher CO2 solubility and diffusion coefficients, which led to improved selectivity for CO2. The layer distance in particular was a crucial factor that directly influenced the diffusion coefficient. The researchers recommended that future investigations should focus on improving separation performance, for example by reducing the membrane thickness.
At Frontis Energy, we are looking forward to a good commercial product that can separate CO2 from gas mixtures, such as biogas, effectively and cheap.
Unfortunately, water pollution is still an issue in many places. Heavy metals are a group of water pollutants that can accumulate in the human body and causing cancer and other diseases. Existing technologies for heavy metal removal, however, are very energy intensive.
Scientists from the Nanyang Technological University in Singapore and the Swiss Federal Institute of Technology Zurich (ETHZ) have created a new membrane out of byproducts from the vegetable oil industry. The membrane removes heavy metals from contaminated water. The team discovered that proteins, which originated from peanut or sunflower oil production bind heavy metal ions very effectively. In their tests, they showed that this adsorption process can purify contaminated water so much that it fulfills drinking water quality standards.
The researchers see their membranes as an inexpensive, simple, sustainable and scalable solution for heavy metal removal from water. Their results were published in the Chemical Engineering Journal.
The new protein based membranes were generated by an environmentally friendly process and needed little energy for their use. This makes them a promising water purification solution for industrialized nations as well as less developed countries.
The production of commercial vegetable oils generates protein rich waste products. These remnants remain from the raw plant after the oil extraction. For their membranes, the research team used sunflower and peanut oils. After the proteins had been extracted, they were transformed into nano-amyloid fibrils. These are rope-like structures built from tightly intertwined proteins. The protein fibrils strongly attract heavy metals and act like a molecular sieve. In the published experiments, the membranes removed up to 99.89 percent of heavy metals.
Among the three metals tested, lead and platinum were filtered most effectively, followed by chrome. Since platinum is often used as a catalyst in fuel cells or electrolyzers, the new membrane would be an elegant and cheap method to recover this metal.
The researchers combined the extracted amyloid fibrils with activated carbon. Due to the high surface volume ratio of the amyloid fibrils, they are particularly suitable for adsorption large amounts of heavy metals. The filter can be used for all types of heavy metals. In addition, organic pollutants such as perfluoralkyl and polyfluoralkyl compounds are filtered as well. These chemicals are used for a variety of consumer and industrial products, as well as in nafion membranes of fuel cells.
The concentration of heavy metals in contaminated water determines how much volume the membrane can filter. A hybrid membrane made of sunflower amyloids requires only 16 kg of protein to filter a swimming pool contaminated with 400 parts lead per billion. One kilogram of sunflower extract yields about 160 g of protein. The protein-rich sunflower and peanut oils are inexpensive raw materials. Since this is the first time that amyloid fibrils were obtained from sunflower and peanut proteins, the process must still be scaled and industrialized.
However, due to its simplicity and minimal use of chemical reagents, the process seems easy to scale. This makes it possible to recycle the waste product for further applications and to fully exploit such industrial food waste. The filtered metals can also be extracted and further recycled. After filtration, the membrane with the captured metals can simply be burned and leaving behind only the metals.
While toxic metals such as lead or mercury need safe disposal, other metals such as platinum can be re-used in the production of electronics and other high value devices, such as fuel cells. The recovery of the precious platinum, which costs 30,000 euros per kg, only requires 32 kg of protein, while the recovery of gold, which corresponds to almost 55,000 euros per kg, only requires 16 kg of protein. In view of the costs of less than 1 euro per kg of protein, the advantages are enormous.
The co-author of the article, Raffaele Mezzenga, had already discovered in 2016 that whey proteins from cow milk had similar properties. Back then, the researchers noticed that proteins from plant oil seeds could also have similar properties.
Another great advantage is that, unlike other methods such as reverse osmosis, this filtration does not require electricity. Gravity is completely sufficient for the entire filtration process. The method is also suitable for water purification in poorly developed areas.
Lead was widely used in water pipes during the industrial revolution that triggered urbanization and exponential growth of the population in metropolitan centers. The reason for its popularity was the plasticity of the material used in service lines near the end user. The negative health effects have been known since the 1920s, but infrastructure modernization in industrialized countries remains an enormous economic challenge. Lead service lines therefore continue to circulate water in our supply systems. The city of Flint in the northwest of Detroit, for example, received much press attention due to its long struggle with lead poisoning (e.g. Flint Water Crisis). Dissolved lead is highly toxic in a very small concentration and accumulates in body tissues.
The biggest challenge when removing lead from the water cycle is that it is usually dissolved in very low concentrations. Other compounds “mask” the dissolved lead, which makes its removal difficult. Sodium, for instance, is concentrated ten thousand times higher than lead. While nowadays lead can be removed from water by reverse osmosis or distillation, these processes are not selective and thus ineffective. They consume a lot of energy, which in turn is an environmental issue in itself. High energy consumption makes water treatment also very expensive. At the same time, other minerals dissolved ion water are beneficial and therefore desired ingredients that should not be removed.
MIT engineers have developed a much more energy-efficient method to selectively remove lead from water and published their results in the journal ACS EST Water. The new system can remove lead from water in private households or industrial plants and hence from the water cycle. Through its efficiency, it is economically attractive and offers its users the clear advantage of not being poisoned.
The method is the most recent of a number of development steps. The researchers started with desalination systems and later developed it into radioactive decontamination method. With lead the engineers have found an attractive market. It is the first system that is also suitable for private households. The new approach uses a process that was named shock electrodialysis by the MIT engineers. It is essentially very similar to electrodialysis as we know it, as charged ions migrate into an electric field through the electrolyte. As a result, ions are enriched on one side while being depleted on the other.
The difference of the new method is that the electric field moves as a sort of shock wave through the electrolyte and drags dissolved ions along. The shock wave traverses from one side to the other is the voltage increases. The process leads to a lead reduction of 95%. Today, similar methods are also used to clean up aquifers or soil contaminated by solvents. In principle, the shock wave makes the process much cheaper than existing processes because the electrical energy is targeted to remove specifically lead while leaving other minerals in the water. Hence, a lot less energy is consumed.
As usual for bench top prototypes, shock electrodialysis is still too ineffective to be economically viable. Its up-scaling will take time. But the strong interest of potential users will certainly accelerate its industrialization. For a household whose water supply is contaminated by lead, the system could be placed in the basement and slowly clean the water carried by the supply pipes because high rates occur only during peak hours. For this purpose, a water reservoir is necessary, keeping a stock of purified water. This can be a fast and cheap solution for communities such as Flint.
The process could also be adapted for some industrial purposes. The mining and oil industries produce much heavily contaminated wastewater. One imagine to reclaim dissolved metals and sell them to the market. This would create economic an incentives for wastewater treatment. However, a direct comparison with currently existing methods is difficult because the longevity of the developed system is yet to be demonstrated.
At Frontis Energy we are thrilled by the idea of creating economic incentives to help implementing environmentally friendly processes and are already looking forward to a commercial product.
In wastewater treatment, aeration is an energy-intensive but necessary process to remove contaminants. Pumps blow air into the wastewater to supply the microbes in the treatment tank with oxygen. In return, these bacteria oxidize organic substances to CO2 and hence remove them from the wastewater. This process is the industrial standard and has proven itself for over a century. If the researchers at Washington State University and the University of Idaho have their way, that is changing now.
In their project, the researchers used a unique microbial fuel cell system they developed to replace aeration. Their novel wastewater treatment system cleans wastewater with the help of microorganisms that produce electricity. These microbes are called electrophiles.
The work should one day lead to less dependence on the energy-intensive treatment processes. Most of the energy in such processes is consumed in the activated sludge and its disposal. The energy consumption in water treatment produces around 4-5% of anthropogenic CO2 worldwide. to put that in perspective, according to the Air Transport Action Group in Geneva, international air transport produced 2.1% CO2 in 2019. The researchers published their work in the journal Bioelectrochemistry. In addition to cutting green house gas emissions, lowering the energy consumption of wastewater treatment would save billions in annual operation and maintenance costs.
Microbial fuel cells allow microbes to convert chemical energy into electricity, much like in a battery. In wastewater treatment, a microbial fuel cell can replace aeration while capturing electrons from wastewater organics. These electrons themselves are in turn a waste product of the microbial metabolism. All living organisms strive to discharge their excess electrons. This process is known as respiration or fermentation. The electricity generated the microbes can be used for useful applications in the wastewater treatment plant itself. The technology kills two birds with one stone. On the one hand, the treatment of the wastewater saves energy. On the other hand, it also generates electricity.
Up until now, microbial fuel cells have been used experimentally in wastewater treatment systems under ideal conditions, but under real and changing conditions they often fail. Microbial fuel cells lack regulation that controls the potential of anodes and cathodes and thus the cell potential. This can easily lead lead to a system failure. The entire cell must then be replaced.
To tackle this problem, the researchers added an additional reference electrode to the system that enables them to control their fuel cell. The system becomes more flexible. It can either work as a microbial fuel cell on its own and consume no energy, or it can be converted so that less energy is used for aeration while it purifies the wastewater more intensively. Frontis Energy uses a similar control system for its electrolysis reactors.
The system was operated for one year without major issues in the laboratory as well as a pilot in a wastewater treatment plant in Idaho. It removed contaminants at rates comparable to those in a classic aeration tanks. In addition, the microbial fuel cell could possibly be used completely independent of grid power. The researchers hope that one day it could be used in small wastewater treatment plants, such as cleaning livestock farms or in remote areas.
Despite the progress, there are still challenges to be overcome. They are complex systems that are difficult to build. At Frontis Energy we specialize in such systems and can help with piloting and commercialization.
Biochar is a coal-like substance that is mainly made from agricultural waste products. It can remove contaminants such as pharmaceuticals from treated wastewater. This is the result of research carried out by scientists of the Pennsylvania State University and the Arid Lands Agricultural Research Center in Arizona. The biochar was made from two agricultural residues common in the US: cotton and guayule.
To test the ability of biochar to adsorb pharmaceuticals from treated wastewater, the scientists compared three common compounds. During adsorption, a material like a pharmaceutical adheres to the surface of solid biochar particles. In the case of absorption, in turn, one material is taken up into another, such as in a sponge.
The shrub guayule grows in the dry southwestern US and its waste was used for the biochar tested. Among bonatics, it is also called Parthenium argentatum. The shrub is cultivated as a source of rubber and latex. The plant is chopped to the ground and its branches crushed to extract the latex. The dry, mushy, fibrous residue that remains after the stalks are chopped up to extract the latex is called bagasse.
The results are important as they demonstrate the potential of biochar made from abundant agricultural waste. If it wasn’t re-used, this waste would have to be disposed at a cost. The production of biochar is an inexpensive additional processing step to reduce contamination in treated wastewater used for irrigation.
At the same time, most wastewater treatment plants are currently not equipped to remove emerging contaminants such as pharmaceuticals. If these toxic compounds were removed by biochar, the wastewater could be reprocessed in irrigation systems. This re-use is crucial in regions where water scarcity is a constraint for agricultural production.
The pharmaceutical compounds used in the study were: sulfapyridine, an antibacterial drug commonly used in veterinary medicine; docusate, a widely used laxative and stool softener, and erythromycin, an antibiotic used to treat infections and acne.
The results, published in the journal Biochar, suggest that biochar can effectively adsorb agricultural waste. The biochar obtained from cotton processing waste was a lot more efficient. It adsorbed 98% of the docusate, 74% of the erythromycin and 70% of the sulfapyridine from aqueous solutions. In comparison, the biochar obtained from guayule residues bagasse adsorbed 50% of the docusate, 50% of the erythromycin and only 5% of the sulfapyridine.
Research found that a temperature rise from about 340°C to about 700°C in the oxygen-free pyrolysis process used to convert agricultural waste materials to biochar resulted in a improved capacity for adsorption.
To date, there have been no studies on the use of guayule bagasse to make biochar and remove contaminants, nor are there any for cotton processing waste. Some research has been carried out into the possible removal of other contaminants. However, this is the first study to use cotton gin waste specifically to remove pharmaceuticals from water.
The research is more than theoretical. At Frontis Energy we hope that the technology will soon be available on industrial scale. With cotton gin waste being widespread even in the poorest regions, we believe this source of biochar holds great promise for decontaminating water. The next step would be to develop a mixture of biochar material to adsorb a wider variety of contaminants from water.
Separating liquid compartments is not only important for generating energy in biological cells, respiration that is, but also for electrochemical cells and desalination through reverse osmosis and other processes. Therefore, scientists and engineers intensively research this field. We have already reported in several posts about promising attempts to make membranes cheaper and more effective. New nanomaterials have also been developed.
As a result of climatic changes caused by global warming, water scarcity is increasingly becoming a problem in many parts of the world. Settlements by the sea can secure their supply by desalinating water from seawater and brackish water sources. The process, however, is very energy intensive.
Now, researchers at California’s Lawrence Livermore National Laboratory (LLNL) have developed artificial pores made of carbon nanotubes that remove salt from water so efficiently that they are comparable to already available commercial desalination membranes. These tiny pores are only 0.8 nanometers in diameter. A human hair with a diameter of 60,000 nm. The researchers published the results in the journal Science Advances.
The predominant technology used to remove salt from water is reverse osmosis. A thin-film composite membrane (TCM) is used to separate water from ions. Hitherto the performance of these membranes has, however, been unsatisfactory. There is, for example, always a tradeoff between permeability and selectivity. In addition, exisiting membranes often show insufficient ion repulsion and are contaminated by traces of impurities. This requires additional cleaning stages, which again increase energy costs.
As is so often the case, the researchers got inspired by nature. Biological water channels, also known as aquaporins, are a great model for the structures that can improve performance. These aquaporins have extremely narrow internal pores that compress the water. This enables extremely high water permeability with transport rates of more than 1 billion water molecules per second per pore. Due to the low friction on the inner surfaces, carbon nanotubes represent one of the most promising approaches for artificial water channels.
The research group developed nanotube porins that insert themselves into artificial biomembranes. These engineered water channels simulate the functionality of aquaporin channels. The researchers measured the water and ion transport through their artificial porins. Computer simulations and experiments using the artificial porins in lipid membranes showed improved flux and strong ion repulsion in the channels of carbon nanotubes.
This measurement method can be used to determine the exact value of the water-salt permselectivity in such narrow carbon nanotubes. Atomic simulations provide a detailed molecular view of the novel channels. At Frontis Energy, we are excited about this promising approach and hope to see a commercial product soon.
Life cycle analyzes of vehicles with different drive concepts are the subject of many studies. When it comes to CO2 emissions, the energy source is crucial. Two main developments are discussed today: the electrification of the propulsion system (i.e. fully and partially electrified vehicles) and the electrification of fuels (i.e. hydrogen and synthetic fuels).
In the manufacture of synthetic fuels, water is broken down into oxygen and hydrogen by electrolysis with renewable electricity. Due to the temporary oversupply of renewable electricity, this energy is particularly cheap. The hydrogen can then be used in hydrogen vehicles propelled by fuel cells. Alternatively, CO2 can be converted into hydrocarbons with hydrogen and then used in conventional combustion engines in a climate-neutral manner. The advantage of fuel cell vehicles is their high efficiency and the low cost of electrolysis. The disadvantage is the lack of a hydrogen infrastructure. Converting from hydrocarbons to hydrogen would cost trillions. The cheaper alternative would be synthetic hydrocarbons. However, the development is still in its infancy and the production of synthetic fuels cannot yet be carried out on a large scale.
Hydrogen and synthetic fuels are a necessary addition to electromobility, especially for long-distance and load transport. The widespread view that the low level of efficiency of internal combustion engines makes these fuels uninteresting ignores the possibility of using them to store and transport energy and to enable climate neutrality for air and shipping traffic. If you compare the CO2 emissions from electric motors and electrified fuels, it becomes clear that these mainly depend on the CO2 pollution of the electricity used.
Synthetic fuel sources
The production of synthetic fuel requires renewable electricity, water and CO2. The technical processes are known. However, the first large-scale industrial plants are only in the planning phase. However, pilot projects such as that of the Canadian company Carbon Engineering have shown the technical feasibility of scaling. The generation costs depend mainly on the size of the plant and the electricity price, which results from the local conditions, the structure of the electricity market and the share of renewable electricity.
The decentralized production of these fuels brings not only climate neutrality but also geopolitical gains. Since CO2 and renewable energy – in contrast to lithium – are generally accessible resources, users of this technology become independent of energy imports. At Frontis Energy we think these are strong arguments in favor of synthetic fuels.
Forests are vital to our society. In the EU, forests make up around 38% of the total land area. They are important carbon sinks as they eliminate around 10% of EU greenhouse gases. Efforts to conserve them are a key part of EU climate targets. However, the increasing demand for forest products poses challenges for sustainable forest management.
According to a report recently published in the renowned science magazine Nature, the EU’s deforested area has increased by 49% and with it the loss of biomass (69%). This is due to large-scale deforestation, which reduces the continent’s carbon absorption capacity and accelerates climate change.
The analyzed a series of very detailed satellite data. The authors of the report show that deforestation occurred primarily on the Iberian Peninsula, the Baltic States, and Scandinavia. Deforestation of forest areas increased by 49% between 2016 and 2018. Satellite images also show that the average area of harvested land across Europe has increased by 34 percent, with potential implications for biodiversity, soil erosion and water regulation.
The accelerating deforestation could thwart the EU’s strategy to combat climate change, which aims in particular to protect forests in the coming years, the experts warn in their study. For this reason, the increasing use of forests is challenging to maintain the existing balance between the demand for wood and the need to preserve these key ecosystems for the environment. Typically, industries such as bioenergy or the paper industry are the driving forces behind deforestation.
The greatest acceleration in deforestation was recorded in Sweden and Finland. In these two countries, more than 50% of the increase in deforestation in Europe has been recorded. Next in line are Spain, Poland, France, Latvia, Portugal and Estonia, which together account for six to 30% of the increase, the study said.
Experts suggest linking deforestation and carbon emissions in model calculations before setting new climate targets. The increase in forest harvest is the result of the recent expansion of global wood markets, as evidenced by economic indicators for forestry, timber bioenergy and international trade. If such a high forest harvest continues, the EU’s vision of forest-based mitigation after 2020 could be compromised. The additional carbon losses from forests would require additional emission reductions in other sectors to achieve climate neutrality.
At Frontis Energy, we find the competition between bioenergy and this important carbon sink particularly disturbing, as both are strategies to mitigate global warming.
An abandoned or unproductive oilfield can be reused for methane production from CO2 using renewable electrical power. Exhausted oilfields can be reactors for the conversion of renewable energy to natural gas using microbes. To achieve this, an oilfield can be made electrically conductive and catalytically active to produce natural gas from renewable power sources. The use of natural gas is superior to any battery because of the existing infrastructure, the use in combustion engines, the high energy density and because it can be recycled from CO2. Oilfields are superior to any on-ground production because of the enormous storage capacities. They are already well explored and these geological formations underwent environmental risk assessments. Lastly, the microbial power-to-gas technology is already available.
Process summary
Whole process (end-to-end via methane)
50% electrical efficiency
Energy density of methane
180 kWh kg−1
Storage capacity per oilfield
3 GWh day−1
Charge/Discharge cycles
Unlimited
Investment (electrodes, for high densities)
$51,000 MW−1
Cost per kWh (>5,000 hours anode lifetime)
<$0.01 kWh−1
Electrolyte
Seawater
The Problem
To address the problem of storing renewable energy, batteries have been proposed as a possible solution. Lithium ion batteries have a maximum energy storage capacity of 0.3 kWh kg−1. To date, this is considered the best trade-off between cost and efficiency but these batteries are still too inefficient to replace gasoline, which has a capacity of about 13 kWh kg−1. This makes battery driven cars heavier than conventional cars. Lithium air batteries are considered a possible alternative because they can reach theoretical capacities of 12 kWh kg−1 but technical difficulties have prevented them from being used for transportation.
In contrast, methane has an energy density of 52 MJ kg−1 corresponding to 180 kWh kg−1 which is second only to hydrogen with 500 kWh kg−1, not counting in nuclear energy. This high energy density of methane and other hydrocarbons along with their facile usage, is the reason why they are used in combustion and jet engines that drive nearly all transportation to date. While electrical cars seem to be a tempting green alternative, the fact that combustion engines and the fueling infrastructure are so wide-spread makes it difficult to switch.
In addition to the difficulty of changing habits, battery-driven electrical cars need other limited natural resources such as lithium. To equip all 94 million automobiles produced worldwide in 2017, 3 mega tons lithium carbonate would need to be mined annually. This is nearly 10% of the entire recoverable lithium resources of 35 mega tons worldwide. Although lithium and other metals can be recycled, it is clear that metal based batteries alone will not build the bridge between green energy and traditional ways of transportation due to the low energy densities of metals. And this does not even take into account other energy demands such as industrial nitrogen fixation, aviation or heating.
For Germany, with its high proportion of renewable energy, fuel for cars is not the only problem. As renewable energy is generated in the north, but many energy consumers are in the south, the grid capacity is frequently reached during peak production hours. A steadier energy output can only be accomplished by decentralizing the production or by energy storage. To decentralize production, homeowners were encouraged to equip their property with solar panels or windmills. As tax incentives phase out, homeowners face the problem of energy storage. The best product for this group of customers so far are again lithium ion batteries but investment costs of $0.10 kWh−1 are still unattractive especially because these products store the energy as electricity which can only be used for a short time and is less efficient than natural gas when used for heating.
Natural gas is widely used as energy source today and the global energy infrastructure is designed for natural gas and other fossil fuels. Increasing demand and limited resources for these fossil fuels were the main drivers of oil and gas prices during the last years, slowed by the recent economic crises and hydraulic fracturing (fracking). The high oil price attracted investors to recover oil using techniques that become increasingly expensive and are environmental risks such as deep-sea drilling or tar sand extraction. Ironically, the high oil price made costly renewable energies an economically feasible alternative and helped driving down their cost. Since habits are difficult to change and building an entirely new infrastructure only for renewable energies does not seem economically feasible today while CO2 drives global warming, a more realistic solution needs to be found.
Microbial Power-to-Gas could be a bridging technology that integrates renewable energy into the existing fossil fuel infrastructure. It reaches break even in less than 2 years if certain preconditions are met. This is accomplished by integrating methane produced from renewable energy into the current oil and gas producing infrastructure. The principal idea is to use carbon instead of metals as energy carrier because of its high energy density when bound to hydrogen. The benefits are:
High energy density of 180 kWh kg−1 methane
Low investments due to existing infrastructure (natural gas, oilfield equipment)
Carbon is not a limited resource
Low CO2 footprint due to CO2 recycling
Methane is a transportation fuel
Methane is the energy carrier for the Haber-Bosch process
Inexpensive catalysts further reduce initial investments
Low temperatures due to bio-catalysis
No toxic compounds used
No additional environmental burden because existing oilfields are reused
The solution
Methane can be synthesized by microbes or chemically. Naturally, methane is produced by anaerobic (oxygen-free) microbial biomass decomposition. The energy for biomass synthesis is provided by sunlight or chemical energy like hydrogen. In the case of methanogens (methane producing microbes), energy is harvested after CO2 and hydrogen were released from biomass decomposition following a 1-to-4 stoichiometry:
CO2 + 4 H2 → CH4 + 2 H2O
Without microbes, methane is produced by the Nobel-prize winning Sabatier reaction and several attempts are currently underway to use it on industrial scale. It is necessary to split water into hydrogen and use this to reduce CO2 in the gas phase. A major drawback of the Sabatier reaction is the need for high temperatures around 385ºC, and a nickel catalyst that becomes quickly spent. Methanogens use iron-nickel enzymes called hydrogenases to harvest energy from hydrogen, but do so at ambient temperatures.
Power-to-Gas concept for exhausted oilfields. Electrolysis catalyzes water splitting inside the oilfield producing methane gas and O2.
The future challenge will be to accelerate methane production rates as has been reported for a high temperature oilfield cultures. Besides increasing the temperature, the most obvious solution is to use a higher reactive surface and bringing both electrodes closer together. Using carbon brushes that are poor hydrogen catalysts but provide a higher surface for microbial attachment is one possibility. Methane production correlates with microbial cell numbers in the reactors.
The number of methanogens in microbial electrolysis reactors correlates with the electrode surface.
To overcome the problem of expensive carbon (and also steel) brushes for large scale applications,exhausted gas and oilfields could be used. They provide a high surface area and are usually economic liabilities and not assets. Methanogens inhabit oilfields where they carry out the final step in anaerobic petroleum degradation. Hence, oilfields can be seen as bioreactors at geological scale. Geological formations provide ideal conditions for producing, storing and extracting methane.
Open questions and potential solutions
Oilfield porespace volume
The Californian Summerland oilfield, for instance, has been abandoned and extensively studied in the past. It produced 27 billion barrels of oil and 2.8 billion m3 methane during its lifetime of 90 years. This maximum load of 3.5 billion m3 left the same volume of porespace filled with seawater behind. Only 2% of these pores are larger than 50 µm, which is necessary for microbial growth assuming dimensions of 1 x 2 µm of a methanogen cell. Experiments showed that the resulting 70 million m3 accessible porespace have a storage capacity of 35,000 TW. That is a lot of methane assuming a solubility of 0.74 kg methane m−3 seawater at 500 m water depth. All German off-shore windfarms together have a capacity of 7,000 MW. Obviously, the limiting factor is not the volumetric storage capacity of an oilfield.
Microbial methane production rates
But how fast can microbes produce methane in an hypothetical oilfield? Under optimal conditions, methanogens that grow on electrodes (typically the genus Methanobacterium or Methanobrevibacter) can produce methane at a rate of 100-200 nmol ml−1 day−1 (equals 2.24-4.48 ml l−1 day−1) depending on catalyst and potential. Using a production rate of 15 J ml−1 day−1 of methane (190 nmol ml−1 day−1), the entire microbially accessible oilfield (2%) has a capacity of 3.6 million MBtu per year. Microbes would theoretically consume 1 TWh per year for 3.6 million MBtu methane production if there were no losses and electrical power is translated into methane 1-to-1. A power generator of 121 MW would be sufficient to supply the entire oilfield at these rates. However, all German off-shore windfarms produce 7,000 MW meaning that only 3% off-peak power can be captured by our example oilfield. Therefore, the catalytic surface and activity must be increased to accelerate methane conversion rates.
Since methanogens produce methane from hydrogen, not only the 2% porespace big enough for cells can be used resulting in an increased catalytic surface to nearly 60%. A hydrogen catalyst needs to be found that does not out-pace methanogen growth to keep the reservoir pH within the limits of 6-8 required for methanogen growth. This hydrogen catalyst must be cheap and render an oilfield electrically conductive. A chemical formulation that mimics microbial hydrogen catalysis could be used. It has the potential to turn a non-conductive and non-catalytic oilfield into a conductive hydrogen catalyst sufficient to sustain methane production needed to store all of Germany’s electricity produced by off-shore windfarms. This catalyst is soluble in water when inactive. To become active, it coats mineral surfaces by precipitation that can be triggered by indigenous microbes or by electrical polarization. The investment would be $2.3 million per MW storage capacity ($16 billion for the entire 7,000 MW). Due to microbial growth, the catalytic activity of the system improves during operation and there is no need for the second component if an immediate production is not crucial. The investments made on the cathode side would then be as low as $600 per MW ($4.2 million for 7,000 MW).
Anodes
As the cathodic side of the reaction can be excluded as limiting factor, the anode needs to be designed. Several commercially available anodes such as mixed metal oxides (up to 750 A m−2) with platinum on carbon black or niobium anodes (Pt/C, 5-10 kA m−2) could be used. Anodes based on platinum are the most cost-efficient material available on the market. Investments made for Pt/C (10%, 6 mg cm−2) anodes will amount to $50,000 per MW ($350 million for 7,000 MW). However, the exact amount of Pt needed for the reaction still needs to be evaluated in an experiment because the corrosion rate at 2 V cell voltage is unknown. An often cited value for the lifetime of fuel cells is 5,000 hours and is used here to determine the costs per kWh. For 5,000 hours lifetime, the costs per kWh will be at the targeted limit of $0.01 but may be well below that because Pt/C anodes can be recycled and the Pt load may be reduced to 3 mg cm−2 (5%). Alternatively, steel anodes (SS316, 2.5 kA m−2, $54,000 per MW) can be used but it is unclear when steel anodes fail to electrolyze. In conclusion, the anodic side is the cost-driving factor. Hopefully, better water splitting anodes will lower these costs in future.
Cost estimation summary
Windfarms
Already in place
CO2 injection
Already occurred
Natural gas capturing equipment
Already in place
Microbial seed
Wastewater from oil rig
Cathode costs
$600 MW−1
Anode costs
$50,000 MW−1
Electrolyte (seawater)
Free
Total (>5,000 hours anode lifespan)
<$0.01 kWh−1
Energy and conversion efficiencies
The whole cell voltage for microbial power-to-gas reactions varies from 0.6 to 2.0 V, depending on cathodic rates, anodic corrosion and the presence of a membrane. Higher voltages will accelerate anode corrosion, again, making anodes the limiting factor. As the voltage decreases, methane production rates become slower but also more efficient. The voltage also depends on the pH of the oilfield. An oilfield that underwent CO2 injection as enhanced recovery method will have a low pH, providing better conditions for hydrogen production but not for microbial growth and must be neutralized using seawater. As stated above, the oilfield, being the cathode, is not limiting the the system. The use of Pt/C anodes eliminates the overpotential problem on the anode side. Hence, we can assume an ideal system that splits water at 1.23 V. However, the voltage is often 2 V due to anode and cathode overpotentials. Optimized cultures and cathodes produce about 190 nmol ml−1 day−1 methane which equals 0.15 J ml−1 day−1 using the energy of combustion of 0.8 MJ mol−1. The same electrolysis cell consumes 0.2 mW at a cell voltage of 2 V which equals 0.17 J ml−1 day−1 and the resulting energy efficiency is 91%. The anodes can be simple carbon brushes and the two chambers of the cell are separated by a Nafion™ membrane. The system can still be optimized by using Pt/C anodes and by avoiding membranes.
The overall electricity-methane-electricity efficiency also depends on the consumption side efficiency where methane is used in combustion engines and gas fired power plants. Such power plants frequently operate at efficiencies of 40- 60%. Assuming a reasonable power efficiency of 80% (see above), the overall electrical power recovery using gas fired power plants will be up to 50%. Besides the high efficiency of gas fired power plants, they are also easy to build and therefore contribute the a better power grid efficiency. Coal fired power plants can be upgraded to gas fired power plants.
Experimental approach
The conversion efficiencies of charge (Coulombs) transported across the circuit are usually between 70-100% in these systems depending on the electrode material. Another efficiency limitation could arise from mass transport inhibition. Mass transport can be improved by pumping electrolyte adding more costs for pumping which still have to be determined. However, since most oilfields undergo seawater injection for enhanced oil recovery the additional cost may be negligible. The total efficiency has yet to be determined in scale-up experiments and will depend on the factors mentioned above.
The reactor simulates oilfield conditions using sand as filling material under continuous flow of electrolyte.
Controlling the pH is crucial. Alkaline pHs significantly impede hydrogen production and therefore methanogenesis. This can be addressed by a software that monitors the pH and adjusts the potential accordingly. Addition of acids is not desired as this drives the costs. The software can also act as potentiostat that then fully controls the methane production process. To test the process under more realistic conditions, a drill core from an oilfield must be obtained.
Results show methane production in the simulation reactor. The appearance of methane in the anode compartment was a result of flow from the cathode to the anode, carrying produced methane with it.
Return of investment of the microbial power-to-gas process
The the microbial power-to-gas process in unproductive oilfields is economically superior to all other storage strategies because of the low start-up and operating costs. This is achieved because the major investments are the installation of oil- and gas production equipment and renewable power plants which are already in place as a precondition. These investments break even in a short amount of time.
But how can the microbial Power-to-Gas process accelerate the return of investment in renewable energy? Only 8 out of 28 active off-shore windfarms reported their investment costs. These 8 produce roughly half the overall power of 1,600 MW corresponding to $7 billion. While the maximum production of an oilfield with unlimited supply of electricity would yield hypothetical 3.6 million MBtu natural gas per year resulting a return of $13 million per year the real production is limited by off-peak power generated by renewable energy production. Assuming that the maximum annual methane production corresponds to 10% excess electrical power, $15 million per year can by generated by selling 4.3 million MBtu methane per year on the market. These are $15 million that are not lost during off-peak shutdowns. Clearly, this conservative estimate can help to compensate the investment in renewable energy earlier. It also decreases the investment risk because the investment calculations for new wind farms can be made on a more reliable basis.
In the example using all German windfarms (7,000 MW) this compensation roughly doubles. Using the $60 million generated by methane sales per year, the investment of $4 million for the cathodic catalyst and the $36 million for the Pt/C anodes are compensated for within less than a year. No other investments are required because the target oilfield already produced oil and gas and all necessary installation are in working condition. The target oilfield is swept using seawater as secondary extraction method. Electrical installations are in place for cathodic protection of production equipment in order to prevent microbial corrosion, which, however, may need to be upgraded to pass the now higher power densities. Moreover, CO2 is used from CO2 injection as tertiary enhanced oil recovery method. Only the pH may then need to be adjusted to sustain life by sweeping with seawater.
And this is not the end of oilfield storage capacity. In theory, an oilfield can store the entire amount of renewable energy produced in one year globally, allowing more than enough head room for future development and CO2 sequestration.