Posted on

Bioelectrically engineered fuel produced by yeasts

Yeasts such as Saccharomyces cerevisiae are, as the name suggests, used for large scale production of beer and other alcoholic beverages. Their high salt and ethanol tolerance not only makes them useful for the production of beverages, but also suitable for the production of combustion fuels at high alcohol concentrations. Besides ethanol, long-chain fusel alcohols are of high interest for biofuel production as well. Bioethanol is already mixed with gasoline and thus improves the CO2 balance of internal combustion engines. This liquid biofuel is made from either starch or lignocellulose. The production and use of bioethanol supports local economies, reduces CO2 emissions and promotes self-sufficiency. The latter is especially important for resource-depleted landlocked countries.

In order to efficiently produce ethanol and other alcohols from lignocellulose hydrolysates, yeasts must use both glucose and pentoses such as xylose and arabinose. This is because biomass is rich in both lignocellulose and thus glucose and xylose. However, this is also the main disadvantage of using Saccharomyces cerevisiae because it does not ferment xylose. Consequently, the identification of another yeast strains capable of fermenting both these sugars could solve the problem. Highly efficient yeasts can be grown in co-cultures with other yeasts capable of lignocellulose fermentation for ethanol production. Such a yeast is, for example, Wickerhamomyces anomalous.

To further improve ethanol production, bioelectric fermentation technology supporting traditional fermentation can be used. The microbial metabolism can thus be controlled electrochemically. There are many benefits of this technology. The fermentation process becomes more selective due to the application of an electrochemical potential. This, in turn, increases the efficiency of sugar utilization. In addition, the use of additives to control the redox equilibrium and the pH is minimized. Ultimately cell growth can be stimulated, further increasing alcohol production.

Such bioelectric reactors are galvanic cells. The electrodes used in such a bioelectric reactor may act as electron acceptors (anodes) or source (cathodes). Such electrochemical changes affect the metabolism and cell regulation as well as the interactions between the yeasts used. Now, a research group from Nepal (a resource-depleted landlocked country) has used new yeast strains of Saccharomyces cerevisiae and Wickerhamomyces anomalous in a bioelectric fermenter to improve ethanol production from biomass. The results were published in the journal Frontiers in Energy Research.

For their study, the researchers chose Saccharomyces cerevisiae and Wickerhamomyces anomalus as both are good ethanol producers. The latter is to be able to convert xylose to ethanol. After the researchers applied a voltage to the bioelectrical system, ethanol production doubled. Both yeasts formed a biofilm on the electrodes, making the system ideal for use as a flow-through system because the microorganisms are not washed out.

Saccharomyces cerevisiae cells in a brightfield microscopic image of 600-fold magnification (Foto: Amanda Luraschi)

The researchers speculated that the increased ethanol production was due to the better conversion of pyruvate to ethanol − the yeast’s central metabolic mechanism. The researchers attributed this to accelerated redox reactions at the anode and cathode. The applied external voltage polarized the ions present in the cytosol, thus facilitating the electron transfer from the cathode. This and the accelerated glucose oxidation probably led to increased ethanol production.

Normally, pyruvate is converted into ethanol in fermentation yeast. External voltage input can control the kinetics of glucose metabolism in Saccharomyces cerevisiae under both aerobic and anaerobic conditions. Intracellular and transplasmembrane electron transfer systems play an important role in electron transport across the cell membrane. The electron transfer system consists of cytochromes and various redox enzymes, which confer redox activity to the membrane at certain sites.

The authors also found that an increased salt concentration improved conductivity and therefore ethanol production. The increased ethanol production from lignocellulosic biomass may have been also be due to the presence of various natural compounds that promoted yeast growth. When the cellulose acetate membrane was replaced by a Nafion™ membrane, ethanol production also increased. This was perhaps due to improved transport of xylose through the Nafion™ membrane as well as the decrease of the internal resistance. A further increase of ethanol production was observed when the bioelectrical reactor was operated with fine platinum particles coated on the platinum anode and neutral red deposited on the graphite cathode.

Several yeast cultures from left to right: Saccharomyces cerevisiae, Candida utilis, Aureobasidium pullulans, Trichosporum cutaneum, Saccharomycopsis capsularis, Saccharomycopsis lipolytica, Hanseniaspora guilliermondii, Hansenula capsulata, Saccharomyces carlsbergensis, Saccharomyces rouxii, Rhodotorula rubra, Phaffia rhodozyba, Cryptococcus laurentii, Metschnikowia pulcherrima, Rhodotorula pallida

At Frontis Energy, we think that the present study is promising. However, long-chain fusel alcohols should be considered in the future as they are less volatile and better compatible with current internal combustion engines. These can also be easily converted into the corresponding long-chain hydrocarbons.

Posted on

Electrical energy storage

Electrical Energy Storage (EES) is the process of converting electrical energy from a power network into a form that can be stored for converting back to electricity when needed. EES enables electricity to be produced during times of either low demand, low generation cost, or during periods of peak renewable energy generation. This allows producers and transmission system operators (TSOs) the ability to leverage and balance the variance in supply/demand and generation costs by using stored electricity at times of high demand, high generation cost, and/or low generation capacity.
EES has many applications including renewables integration, ancillary services, and electrical grid support. This blog series aims to provide the reader with four aspects of EES:

  1. An overview of the function and applications of EES technologies,
  2. State-of-the-art breakdown of key EES markets in the European Union,
  3. A discussion on the future of these EES markets, and
  4. Applications (Service Uses) of EES.

Table: Some common service uses of EES technologies

Storage Category

Storage Technology

Pumped Hydro

Open Loop

Closed Loop

Electro-chemical

Batteries

Flow Batteries

Capacitors

Thermal Storage

 

Molten Salts

Heat

Ice

Chilled Water

Electro-mechanical

Compressed Air Energy Storage (CAES)

Flywheel

Gravitational Storage

Hydrogen Storage

 

Fuel Cells

H2 Storage

Power-to-Gas

Unlike any other commodities market, electricity-generating industries typically have little or no storage capabilities. Electricity must be used precisely when it is produced, with grid operators constantly balancing electrical supply and demand. With an ever-increasing market share of intermittent renewable energy sources the balancing act is becoming increasingly complex.

While EES is most often touted for its ability to help minimize supply fluctuations by storing electricity produced during periods of peak renewable energy generation, there are many other applications. EES is vital to the safe, reliable operation of the electricity grid by supporting key ancillary services and electrical grid reliability functions. This is often overlooked for the ability to help facilitate renewable energy integration. EES is applicable in all of the major areas of the electricity grid (generation, transmission & distribution, and end user services). A few of the most prevalent service uses are outlined in the Table above. Further explanation on service use/cases will be provide later in this blog, including comprehensive list of EES applications.

Area

Service Use / Case

Discharge Duration in h

Capacity in MW

Examples

Generation

Bulk Storage

4 – 6

1 – 500

Pumped hydro, CAES, Batteries

Contingency

1 – 2

1 – 500

Pumped hydro, CAES, Batteries

Black Start

NA

NA

Batteries

Renewables Firming

2 – 4

1 – 500

Pumped hydro, CAES, Batteries

Transmission & Distribution

Frequency & Voltage Support

0.25 – 1

1 – 10

Flywheels, Capacitors

Transmission Support

2 – 5 sec

10 – 100

Flywheels, Capacitors

On-site Power

8 – 16

1.5 kW – 5 kW

Batteries

Asset Deferral

3 – 6

0.25– 5

Batteries

End User Services

Energy Management

4 – 6

1 kW – 1 MW

Residential storage

Learn more about EES in the EU in the next post.

(Jon Martin, 2019)

Posted on

Faster photoelectrical hydrogen

Achieving high current densities while maintaining high energy efficiency is one of the biggest challenges in improving photoelectrochemical devices. Higher current densities accelerate the production of hydrogen and other electrochemical fuels.

Now a compact, solar-powered, hydrogen-producing device has been developed that provides the fuel at record speed. In the journal Nature Energy, the researchers around Saurabh Tembhurne describe a concept that allows capturing concentrated solar radiation (up to 474 kW/m²) by thermal integration, mass transport optimization and better electronics between the photoabsorber and the electrocatalyst.

The research group of the Swiss Federal Institute of Technology in Lausanne (EPFL) calculated the maximum increase in theoretical efficiency. Then, they experimentally verified the calculated values ​​using a photoabsorber and an iridium-ruthenium oxide-platinum based electrocatalyst. The electrocatalyst reached a current density greater than 0.88 A/cm². The calculated conversion efficiency of solar energy into hydrogen was more than 15%. The system was stable under various conditions for more than two hours. Next, the researchers want to scale their system.

The produced hydrogen can be used in fuel cells for power generation, which is why the developed system is suitable for energy storage. The hydrogen-powered generation of electricity emits only pure water. However, the clean and fast production of hydrogen is still a challenge. In the photoelectric method, materials similar to those of solar modules were used. The electrolytes were based on water in the new system, although ammonia would also be conceivable. Sunlight reaching these materials triggers a reaction in which water is split into oxygen and hydrogen. So far, however, all photoelectric methods could not be used on an industrial scale.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

The newly developed system absorbed more than 400 times the amount of solar energy that normally shines on a given area. The researchers used high-power lamps to provide the necessary “solar energy”. Existing solar systems concentrate solar energy to a similar degree with the help of mirrors or lenses. The waste heat is used to accelerate the reaction.

The team predicts that the test equipment, with a footprint of approximately 5 cm, can produce an estimated 47 liters of hydrogen gas in six hours of sunshine. This is the highest rate per area for such solar powered electrochemical systems. At Frontis Energy we hope to be able to test and offer this system soon.

(Photo: Wikipedia)

Posted on

Ammonia energy storage #2

Recently, we reported on plans by Australian entrepreneurs and their government to use ammonia (NH3) to store excess wind energy. We proposed converting ammonia and CO2 from wastewater into methane gas (CH4), because it is more stable and easier to transport. The procedure follows the chemical equation:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Now we have published a scientific article in the online magazine Frontiers in Energy Research where we show that the process is thermodynamically possible and does indeed occur. Methanogenic microbes in anaerobic digester sludge remove the hydrogen (H2) formed by electrolysis from the reaction equilibrium. As a result, the redox potentials of the oxidative (N2/NH3) and the reductive (CO2/CH4) half-reactions come so close that the process becomes spontaneous. It requires a catalyst in the form of wastewater microbes.

Pourbaix diagram of ammonium oxidation, hydrogen formation and CO2 reduction. At pH 7 and higher, the oxidation of ammonium coupled to methanogenesis becomes thermodynamically possible.

To prove our idea, we first searched for the right microbes that could carry out ammonia oxidation. For our experiments in microbial electrolysis cells we used microorganisms from sediments of the Atlantic Ocean off Namibia as starter cultures. Marine sediments are particularly suitable because they are relatively rich in ammonia, free from oxygen (O2) and contain less organic carbon than other ammonia-rich environments. Excluding oxygen is important because it used by ammonia-oxidizing microbes in a process called nitrification:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Nitrification would have caused an electrochemical short circuit, as the electrons are transferred from the ammonia directly to the oxygen. This would have bypassed the anode (the positive electron accepting electrode) and stored the energy of the ammonia in the water − where it is useless. This is because, anodic water oxidation consumes much more energy than the oxidation of ammonia. In addition, precious metals are often necessary for water oxidation. Without producing oxygen at the anode, we were able to show that the oxidation of ammonium (the dissolved form of ammonia) is coupled to the production of hydrogen.

Oxidation of ammonium to nitrogen gas is coupled to hydrogen production in microbial electrolysis reactors. The applied potentials are +550 mV to +150 mV

It was important that the electrochemical potential at the anode was more negative than the +820 mV required for water oxidation. For this purpose, we used a potentiostat that kept the electrochemical potential constant between +550 mV and +150 mV. At all these potentials, N2 was produced at the anode and H2 at the cathode. Since the only source of electrons in the anode compartment was ammonium, the electrons for hydrogen production could come only from the ammonium oxidation. In addition, ammonium was also the only nitrogen source for the production of N2. As a result, the processes would be coupled.

In the next step, we wanted to show that this process also has a useful application. Nitrogen compounds are often found in wastewater. These compounds consist predominantly of ammonium. Among them are also drugs and their degradation products. At the same time, 1-2% of the energy produced worldwide is consumed in the Haber-Bosch process. In the Haber-Bosch process N2 is extracted from the air to produce nitrogen fertilizer. Another 3% of our energy is then used to remove the same nitrogen from our wastewater. This senseless waste of energy emits 5% of our greenhouse gases. In contrast, wastewater treatment plants could be net energy generators. In fact, a small part of the energy of wastewater has been recovered as biogas for more than a century. During biogas production, organic material from anaerobic digester sludge is decomposed by microbial communities and converted into methane:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

The reaction produces CO2 and methane at a ratio of 1:1. Unfortunately, the CO2 in the biogas makes it almost worthless. As a result, biogas is often flared off, especially in places where natural gas is cheap. The removal of CO2 would greatly enhance the product and can be achieved using CO2 scrubbers. Even more reduced carbon sources can shift the ratio of CO2 to CH4. Nevertheless, CO2 would remain in biogas. Adding hydrogen to anaerobic digesters solves this problem technically. The process is called biogas upgrading. Hydrogen could be produced by electrolysis:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Electrolysis of water, however, is expensive and requires higher energy input. The reason is that the electrolysis of water takes place at a relatively high voltage of 1.23 V. One way to get around this is to replace the water by ammonium:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

With ammonium, the reaction takes place at only 136 mV, which saves the respective amount of energy. Thus, and with suitable catalysts, ammonium could serve as a reducing agent for hydrogen production. Microorganisms in the wastewater could be such catalysts. Moreover, without oxygen, methanogens become active in the wastewater and consume the produced hydrogen:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

The methanogenic reaction keeps the hydrogen concentration so low (usually below 10 Pa) that the ammonium oxidation proceeds spontaneously, i.e. with energy gain:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

This is exactly the reaction described above. Bioelectrical methanogens grow at cathodes and belong to the genus Methanobacterium. Members of this genus thrive at low H2 concentrations.

The low energy gain is due to the small potential difference of ΔEh = +33 mV of CO2 reduction compared to the ammonium oxidation (see Pourbaix diagram above). The energy captured is barely sufficient for ADP phosphorylationG°’ = +31 kJ/mol). In addition, the nitrogen bond energy is innately high, which requires strong oxidants such as O2 (nitrification) or nitrite (anammox) to break them.

Instead of strong oxidizing agents, an anode may provide the activation energy for the ammonium oxidation, for example when poised at +500 mV. However, such positive redox potentials do not occur naturally in anaerobic environments. Therefore, we tested whether the ammonium oxidation can be coupled to the hydrogenotrophic methanogenesis by offering a positive electrode potential without O2. Indeed, we demonstrated this in our article and have filed a patent application. With our method one could, for example, profitably remove ammonia from industrial wastewater. It is also suitable for energy storage when e.g. Ammonia synthesized using excess wind energy.

Posted on

Fuel Cells

Fuel cells are a special type of galvanic cells. They can be fueled by solid, liquid, or gaseous fuel. The electrochemical oxidation of the fuel is coupled to energy gain, which is captured in form of electricity – as opposed to heat during chemical oxidation. Hence, fuel cells are direct energy converters with high efficiency. Most fuel cells achieve an energy conversion efficiency of 70-90%. If the conversion is 100%, no waste heat is produced. This ideal case of energy conversion is called ‘cold combustion’ which has been demonstrated for the first time in 1955 by Justi & Winsel. The fuel for this process is hydrogen gas, H2. It enters a porous nickel tube (gas diffusion electrode) where it is dissociated into protons and electrons according to:

H2 → 2 H+ + 2 e

Hydrogen fuel (H2) and oxygen (O2) are pumped into a fuel cell where two electrodes and the electrolyte fuse them to water.

During desorption, each H atom releases a proton (H+) and an electron (e). The electron is discharged onto the electrode, called anode, and the proton into the electrolyte. As a result of the dissociation process, the anode becomes negatively charged. On the second electrode, called cathode, oxygen gas, O2, is then charged with the electron and converted into O2− ions. The cathode becomes positively charged. Both electrodes are submerged in electrolytes which is in most cases a potassium hydroxide, KOH, solution of water. In the electrolyte, cations (H+) and anions (O2−) form water by chemical fusion. Theoretically, the efficiency is 92% accompanied by little waste heat – as opposed to normal combustion where heat of ~3,000ºC is produced.

2 H2 + O2 → H2O

Unlike heat power generators, fuel cells achieve high direct energy conversion efficiency because they avoid the additional step of heat generation. Besides shortcutting heat generation, fuel cells operate without mechanical parts and emit no noise, flue gas, or radioactivity, which puts them in focus of future developments. Due to their high energy efficiency and the high energy density of hydrogen, fuel cells are ideal for electric vehicles. In space flight, fuel cells were first used during Apollo Program between 1968 and 1972, in the Skylab Project 1973, the Apollo-Soyus Program, the Space Shuttle Program, and on board the International Space Station. There, they provide the electrical power for tools and water treatment. One benefit is that the final product of cold combustion in fuel cells is that water is the final product which is used by astronauts on their missions.

There are various types of fuel cells but all have in common that they consist of electrodes for fuel and O2 activation, and electrolytic conductors between these electrodes. Recent variations of fuel cells include methane fuel cells and microbial fuel cells. Due to the high activation energy of methane, methane fuel cells usually operate at high temperature using solid electrolytes. Microbial fuel cells, use microbes as anodic catalyst and organic matter in water as fuel. This makes them ideal for wastewater treatment.

Posted on

Nanomaterials in bio-electrical systems could improve performance

Since Professor Potter’s discovery of the ability of microbes to turn organic molecules into electricity using microbial fuel cells (MFC) more than a century ago (Potter MC, 1911, Proc Roy Soc Lond Ser B 84:260–276), much research was done to improve the performance. Unfortunately, this did not not produce an economically viable technology. MFCs never made it out of the professors’ class rooms. This may change now that we have advanced nanomaterials available.

The testing of nanomaterials in bio-electrical systems has experienced a Cambrian explosion. The focus usually was on electrodes, membranes, and in the electrolyte with infinite possibilities to find high performing composites. The benefits of such materials include a large surface area, cost savings, and scalability. All are required to successfully commercialize bio-electrical systems. The large-scale commercial application could be wastewater treatment. In our recently published literature survey we discovered that there is no common benchmark for performance, as it is usual in photovoltaics or for batteries. To normalize our findings, we used dollar per peak power capacity as ($/Wp) as it is standard in photovoltaics. The median cost for air cathodes of MFCs is $4,700 /Wp ($2,800 /m²). Platinum on carbon (Pt/C) and carbon nanofibers are the best performing materials with $500 /Wp (Pt/C $2,800 /m²; nanofibers $2,000 /m²).

We found that carbon-based nanomaterials often deliver performance comparable to Pt/C. While MFCs are still far away from being profitable, microbial electrolysis cells already are. With these new carbon-based nanomaterials, MFCs however, are moving closer to become an economic reality. Graphene and carbon nanotubes are promising materials when they are combined with minerals such as manganese or iron oxides. However, the price of graphene is still too expensive to let MFCs become an economic reality in wastewater treatment. The costs of microbial electrolysis, however, are already so low that it is a serious alternative to traditional wastewater treatment as we show in the featured image above. For high strength wastewater, a treatment plant can in fact turn into a power plant with excess power being offered to surrounding neighborhoods. Reducing the costs of microbial electrolysis is accomplished by using a combination of cheap steel and graphite.

Relationship between MEC reactor capacity and total electrode cost including anode and cathode. Errors are standard deviations of four different tubular reactor designs. Anodes are graphite granules and cathodes are steel pipes

 

Graphite, in turn, is the precursor of graphene, a promising material for MFC electrodes. When graphite flakes are reduced to a few graphene layers, some of the most technologically important properties of the material are greatly improved. These include the overall surface and the elasticity. Graphene is therefore a very thin graphite. Many manufacturers of graphene use this to sell a material that is really just cheap graphite. In the journal Advanced Materials Kauling and colleagues published a systematic study of graphene from sixty manufacturers and find that many high-priced graphene products consist mainly of graphite powder. The study found that less than 10% of the material in most products was graphene. None of the tested products contained more than 50% graphene. Many were heavily contaminated, most likely with chemicals used in the production process. This can often lead to a material having catalytic properties which would not have been observed without contamination, as reported by Wang and Pumera.

There are many methods of producing graphene. One of the simplest is the deposition on a metallic surface, as we describe it in our latest publication:

Single-layer graphene (SLG) and multilayer graphene (MLG) are synthesized by chemical vapor deposition (CVD) from a carbon precursor on catalytic metal surfaces. In a surface-mediated CVD process, the carbon precursor, e.g. Isopropyl alcohol (IPA) is decomposed on the metal surface, e.g. Cu or Ni. In order to control the number of graphene layers formed, the solubility of the carbon precursor on the metal catalyst surface must be taken into account. Due to the low solubility of the precursor in Cu, SLG can be formed. It is difficult to grow SLG on the surface of a metal with a high affinity for the precursor.

Protocol:
The protocol is a cheap, safe and simple method for the synthesis of MLG films by CVD in 30-45 minutes in a chemistry lab. A nickel foil is submersed in acetic acid for etching and then transferred to an airtight quartz tube. The same protects the system from ambient oxygen and water vapor. Nitrogen gas is bubbled through the IPA and the resulting IPA saturated gas is passed through the closed system. The exhaust gases are washed in a beaker with a water or a gas wash bottle. The stream is purged for 5 minutes at a rate of about 50 cc/min. As soon as the flame reaches a Meker burner 575-625 °C, it is positioned under the nickel foil, so that sufficient energy for the formation of graphene is available. The flame is extinguished after 5-10 minutes to stop the reaction and to cool the system for 5 minutes. The graphene-coated Ni foil is obtained.

But how thin must graphite flakes be to behave as graphene? A common idea supported by the International Organization for Standardization (ISO) is that flakes with more than ten graphene layers consist essentially of graphite. Thermodynamics say that each atomic layer in a flake with ten or fewer layers at room temperature behaves as a single graphene crystal. In addition, the stiffness of the graphite flakes increases with the layer thickness, which means that thin graphene flakes are orders of magnitude more elastic than thicker graphite flakes.

Unfortunately, to actually use graphene in bioelectric reactors, you still have to make it yourself. The ingredients can be found in our DIY Shop.

 
Posted on

An inexpensive scalable multi-channel potentiostat

As our preferred reader, you know already that we work on Power-to-Gas to combat Global Warming. We think that giving CO2 a value will incentivize its recycling and recycling it into fuel turns it into a commodity that everyone needs. While the price of CO2 from air is still too high to convert it into combustion fuel, working on the other end (the CO2 conversion) will help to accommodate such high prices. We have now published an research paper that shows how how to reduce the costs of electronic equipment needed for CO2 conversion. For Power-to-Gas as well es for electrosynthesis of liquid fuels, it is necessary to poise an electrochemical potential. So far, only electronic potentiostats could do that. We have developed a software solution that can control cheap off-the-shelf hardware to accomplish the same goal. Since the software controls µA as well as MA, it is freely scalable. By stacking cheap power supplies, it can also run unlimited channels.

Frontcell© potentiostat setup with two channels. From left to right: digital multimeter (in the back), relay board (in front), two H-type electrolysis cells, power supply, control computer.

We tested the software at a typical experimental Power-to-Gas setup at −800 mV and found that the recorded potential was stable over 10 days. The small electrochemical cells could also be replaced by a larger 7 liter reactor treating real wastewater. The potential was stable as well.

The potential of −800 mV controlled by the Frontcell© potentiostat was stable for 200 ml electrolysis cells (left) as well as for a larger 7 l reactor (right).

As instrument control of mass products also makes the chemical processes involved cheap, microbial electrolysis of wastewater becomes economically feasible. Removal of wastewater organics usually occurs at positive electrochemical potentials. Indeed, the software also stabilizes such potentials at +300 mV.

The Frontcell© potentiostat stabilized a 200 ml electrolysis cells at +300 mV for ten days.

The potentiostat is currently available as command line version. We are currently accepting pre-orders at a 50% discount for the commercial version that comes with a graphical user interface and remote control using an internet browser.

Posted on

Ammonia energy storage #1

The ancient, arid landscapes of Australia are not only fertile soil for huge forests and arable land. The sun shines more than in any other country. Strong winds hit the south and west coast. All in all, Australia has a renewable energy capacity of 25 terawatts, one of the highest in the world and about four times higher than the world’s installed power generation capacity. The low population density allows only little energy storage and electricity export is difficult due to the isolated location.

So far, we thought the cheapest way to store large amounts of energy was power-to-gas. But there is another way to produce carbon-free fuel: ammonia. Nitrogen gas and water are enough to make the gas. The conversion of renewable electricity into the high-energy gas, which can also be easily cooled and converted into a liquid fuel, produces a formidable carrier for hydrogen. Either ammonia or hydrogen can be used in fuel cells.

The volumetric energy density of ammonia is almost twice as high than that of liquid hydrogen. At the same time ammonia can be transported and stored easier and faster. Researchers around the world are pursuing the same vision of an “ammonia economy.” In Australia, which has long been exporting coal and natural gas, this is particularly important. This year, Australia’s Renewable Energy Agency is providing 20 million Australian dollars in funding.

Last year, an international consortium announced plans to build a $10 billion combined wind and solar plant. Although most of the 9 terawatts in the project would go through a submarine cable, part of this energy could be used to produce ammonia for long-haul transport. The process could replace the Haber-Bosch process.

Such an ammonia factories are cities of pipes and tanks and are usually situated where natural gas is available. In the Western Australian Pilbara Desert, where ferruginous rocks and the ocean meet, there is such an ammonia city. It is one of the largest and most modern ammonia plants in the world. But at the core, it’s still the same steel reactors that work after the 100 years-old ammonia recipe.

By 1909, nitrogen-fixing bacteria produced most of the ammonia on Earth. In the same year, the German scientist Fritz Haber discovered a reaction that could split the strong chemical bond of the nitrogen, (N2) with the aid of iron catalysts (magnetite) and subsequently bond the atoms with hydrogen to form ammonia. In the large, narrow steel reactors, the reaction produces 250 times the atmospheric pressure. The process was first industrialized by the German chemist Carl Bosch at BASF. It has become more efficient over time. About 60% of the introduced energy is stored in the ammonia bonds. Today, a single plant produces and delivers up to 1 million tons of ammonia per year.

Most of it is used as fertilizer. Plants use nitrogen, which is used to build up proteins and DNA, and ammonia delivers it in a bioavailable form. It is estimated that at least half of the nitrogen in the human body is synthetic ammonia.

Haber-Bosch led to a green revolution, but the process is anything but green. It requires hydrogen gas (H2), which is obtained from pressurized, heated steam from natural gas or coal. Carbon dioxide (CO2) remains behind and accounts for about half of the emissions. The second source material, N2, is recovered from the air. But the pressure needed to fuse hydrogen and nitrogen in the reactors is energy intensive, which in turn means more CO2. The emissions add up: global ammonia production consumes about 2% of energy and produces 1% of our CO2 emissions.

Our microbial electrolysis reactors convert the ammonia directly into methane gas − without the detour via hydrogen. The patent pending process is particularly suitable for removing ammonia from wastewater. Microbes living in wastewater directly oxidize the ammonia dissolved in ammonia and feed the released electrons into an electric circuit. The electricity can be collected directly, but it is more economical to produce methane gas from CO2. Using our technology, part of the CO2 is returned to the carbon cycle and contaminated wastewater is purified:

NH3 + CO2 → N2 + CH4

 

Posted on

A Graphene Membrane Becomes a Nano-Scale Water Gate

Biological systems can control water flow using channels in their membranes. This has many advantages, for example when cells need to regulate their osmotic pressure. Also artificial systems, e.g. in water treatment or in electrochemical cells, could benefit from it. Now, a group of materials researchers behind Dr. Zhou at the University of Manchester in the United Kingdom have developed a membrane that can electrically switch the flow of water.

As the researchers reported in the journal Nature, a sandwiched membrane of silver, graphene, and gold was fabricated. At a voltage of more than 2 V channels it opens its pores and water is immediately channeled through the membrane. The effect is reversible. To do this, the researchers used the property of graphene to form a tunable filter or even a perfect barrier to liquids and gases. New ‘smart’ membranes, developed using a low-cost form of graphene called graphene oxide, allow precise control of water flow by using an electrical current. The membranes can even be used to completely block water when needed.

To produce the membrane, the research group has embedded conductive filaments in the electrically insulating graphene oxide membrane. An electric current passed through these nanofilaments created a large electric field that ionizes the water molecules and thus controls the water transport through the graphene capillaries in the membrane.

At Frontis Energy we are excited about this new technology and can imagine numerous applications. This research makes it possible to precisely control water permeation from ultrafast flow-through to complete shut-off. The development of such smart membranes controlled by external stimuli would be of great interest to many areas of business and research alike. These membranes could, for instance, find application in electrolysis cells or in medicine. For medical applications, artificial biological systems, such as tissue grafts, enable a plenty of medical applications.

However, the delicate material consisting of graphene, gold, and silver nano-layers is still too expensive and not as resistant as our Nafion™ membranes. But unlike Nafion™ you can tune them. We stay tuned to see what is coming next.

(Illustration: University of Manchester)

Posted on

Starting up Power-to-Gas Reactors

In their paper “Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes“, which was recently published in Applied and Environmental Microbiology, Saheb-Alam et al. teach us how to start-up bio-electrical systems for CO2 conversion to methane gas. They compared pre-acclimated with pristine electrodes and found that there is no difference in start-up time. Their findings stand in contrast to previous observations where pre-acclimation has indeed helped to improve reactor performance. For example, LaBarge et al. found that electrodes acclimated with methane-forming microbes, called Methanobacterium, do reduce start-up time.