Posted on

Alternating catholyte flow improves microbial electrosynthesis start-up

Microbial electrolysis is a technology that uses living microorganisms as electro-catalysts in electrolysis cells. The technology can be used for wastewater treatment. Earlier, we proposed that microbial electrolysis be used to decentralize wastewater treatment and biogas production. Since this is a process that converts CO2 into organic compounds using electricity it can also be used for CO2 valorization. Besides methane, such electrolysis cells produce compounds such as acetic acid (vinegar), caproic acid, and others. It is then called microbial electrosynthesis.

However, the main problem with microbial electrolysis and electrosynthesis is the long start-up time. The start-up time is the time required for the microorganisms to form a biofilm on the electrode surface and to start producing the desired products. It can range from several weeks to several months, depending on the operating conditions and the type of microorganisms. This long start-up time limits the feasibility and the scalability of microbial electrosynthesis, as well as its economic and environmental benefits.

Now, scientists of the Wageningen University in the Netherlands presented new research, which aimed to reduce the start-up time of microbial electrosynthesis. By using a novel technique that involves alternating the direction of the catholyte flow through a three-dimensional electrode they were able to reduce the startup time to only ten days. They hypothesized that this technique enhances mass transfer and biofilm formation, and thus accelerates the CO2 reduction and the product formation. This was a start-up time reduction of 50%, compared to a conventional flow-through electrode.

 

The alternating electrolyte flow also reduced the power consumption to 136 kWh per kg of hydrogen. After 60 days, the local hydrogen concentration at the cathode was at a maximum of 600 μM, which indicates a better mass transport and thus a more active biofilm. The researchers speculated that the alternating catholyte flow improved mass transport, because the hydrogen could be better distributed over the cathode layers. In addition, the researchers think that alternating the flow refreshed potential “dead zones” in the cathode chamber.

The pH in the catholyte was 5.8–6.8 and in optimal range for electrosynthetic microorganisms. Production of short and medium chain fatty acids was linked to the presence of microorganisms identified as Peptococcaceae and Clostridium sensu stricto 12 species. Hydrogenotrophic methanogenesis was also observed and was linked to Methanobrevibacter. The latter is a typical constituent of microbial electrolysis cells that use higher intermediate hydrogen concentrations for electrosynthesis at the cathode.

However, there are limitations of the technique, such as the energy efficiency, the product selectivity, and the scalability of microbial electrosynthesis. Such limitations are typical for bench top experiments. We are therefore looking forward to see an industrial application of this new method.

 

Posted on

Trace metals accelerate hydrogen evolution reaction of biocathodes in microbial electrolysis cells

It has been known that microbial biofilms on biocathodes improve the productions rates of hydrogen evolution reaction (HER). This is the process of producing hydrogen gas from water using electricity. The hydrogen evolution was even accelerated when the biofilm colonizing a biocathode was killed. Different types of bacteria, such as exoelectrogenic (Geobacter sulfurreducens), non-exoelectrogenic (Escherichia coli), and a hydrogenotrophic methanogen (Methanosarcina barkeri) accomplished the feat but Geobacter was the fastest. Even cell debris and metalloproteins catalyzed HER. Therefore, living cells are not required for enhanced HER, and biocathodes could be a cheap and environmentally friendly alternative to precious metal catalysts. While the authors back then speculated on the role of metalloproteins, a new publication in Electrochimica Acta by researchers of Wageningen University shows that indeed trace metals in the growth medium are responsible for the observed rate acceleration.

The authors used a mixture of metal compounds present in the microbial medium such as cobalt, copper, iron, manganese, molybdenum, nickel and zinc salts as well as the metal chelating agent ethylenediaminetetraacetic acid (EDTA) as the catalyst for the HER under microbial compatible conditions (near-neutral pH, mesophilic temperature, aquous electrolyte).

They performed a series of experiments to investigate the effect of different parameters on the catalytic activity and stability of the trace metal mix medium. These parameters included the concentration of the metal compounds, the presence or absence of EDTA, the type of electrode material, and the type of electrolyte. Various techniques to measure the cathodic current, the hydrogen production rate, the overpotential, and the exchange current density of the HER were used.

The results show that the trace metal mix medium increased the cathodic current and the electron recovery into hydrogen significantly, and that copper and molybdenum were the most active compounds in the mix. This is surprising because the previous publication found mostly cobalt and iron compounds on the surface of the biocathodes. Both of which are good hydrogen catalysts as well, whereas molybdenum sulfide for example, did not increase production rates in methanogenic microbial electrolysis cells. HER is the rate determining reaction in methanogenic electrolysis cells because it is the intermediate:

4 H2 + CO2 → CH4 + 2 H2O

The results also showed that removing EDTA from the mix improved the catalyst performance further, as EDTA acted as a complexing (chelating) agent that reduced the availability of metal ions for HER. The results also showed that carbon-based electrodes were more suitable than metal-based electrodes for HER, possibly because they have a higher surface area. This is an interesting result because it was previously thought that the mechanism behind the better performance of carbon electrodes was the microbial preference to adhere to carbon than to metal surfaces. The results also showed that using microbial growth medium as the electrolyte did not affect the catalyst performance significantly, as compared to using phosphate buffer solution.

The authors concluded that their method was a simple, cheap, and environmentally friendly way to prepare effective catalysts for HER using trace metals from microbial growth media. They suggested that these catalysts could be integrated in biological systems for in situ hydrogen production in bio-electrochemical and fermentation processes. Indeed, it is inevitable not to use trace metals in microbial electrolysis cells as they are essential to sustain growth.

Both articles demonstrate that trace metals can play an important role in the HER, and that they can be derived from biological sources. However, they also have some limitations and challenges, such as the stability, selectivity, and scalability of the catalysts. Therefore, further research is needed to optimize the performance and applicability of trace metal-based catalysts for HER.

(Image: US National Science Foundation)

Posted on

Decentralized waste energy systems produce biogas where it is needed

Among others, the current European energy crisis was caused by a surge in demand after the pandemic, the embargo on Russia, the reluctance of investors to finance fossil energy projects and the throttling of production by the OPEC countries. In this complex situation, European countries are forced to develop alternatives and renewable energy sources. At the same time, however, natural gas is difficult to replace in many industries. One exception is the food and beverage industry, which sits enormous untapped resources of biogas in their wastewater.

Wastewater is a resource of which 380 billion m³ are produced worldwide. It contains valuable nutrients and energy. Global production is projected to increase by 51% by 2050. Wastewater treatment consumes about 3-4% of the energy generated globally. The full reeovery of the energy that is contained in this wastewater would completely offset the energy consumption of its treatment and in many cases even produce a surplus. In addition, the entire global water treatment is estimated to account for up to 5% of man-made CO2 production. Unfortunately, many businesses and municipalities do not invest in complex and expensive wastewater treatment technologies and continue to waste this valuable resource. The European Biogas Association estimates that by 2050, a maximum of 65% of gas requirements (~167 billion m³) could be covered by biogas.

Europe is the largest cheese maker in the world. More than 9 million tons of cheese are produced annually. With every ton of cheese, 9 m³ of cheese whey remain. Despite its high nutritional value, whey is often treated like wastewater for various reasons. Yet, the very high organic load in the whey makes it difficult to treat. Wasted whey can also be used for biogas production. In addition to whey, regular wastewater is also produced by cheese makers. For example, a medium-sized cheese factory pays 1.5 million euros a year for its waste water. Reducing these costs by producing biogas would turn dairy industry wastewater into a valuable resource.

This situation is similar in many other food and beverage sectors such as breweries, distilleries, winemakers, bakeries etc. All of these sectors have high energy requirements. Renewable electrical energy cannot meet this need. The market for wastewater treatment in Europe and the US is around 12 billion euros.

Traditional wastewater treatment is a cascaded process including aeration and anaerobic sludge digestion followed by incineration. These methods often consume more than 70% of the energy in a wastewater treatment plant. If contaminants such as high-energy total organic carbon or ammonia were converted into biogas before the process, at least 80% of the energy needed for wastewater treatment could be saved. It is absurd that this energy is removed from the wastewater using even more energy.

An ever-increasing number of sewage treatment plants already recover the resources contained in their wastewater, apart from the water itself. The oldest recivered products are biogas and fertilizers made from sewage sludge. Due to its heavy metal content such as copper and mercury, sewage sludge is no longer used as fertilizer but incinerated.

Biogas is particularly popular in Europe as the produced volumes and prices are high enough to compete with natural gas. Biogas is also a green alternative to natural gas as no additional CO2 is emitted. (Hence, it is often called Renewable Natural Gas in North America.) A disadvantage of classic biogas is the CO2 and sulfide content. Another disadvantage is that anaerobic digestion is the terminal treatment step, wasting valuable wastewater resources in the preceding treatment. Finally, the size and complexity of current digestion requires significant commitment from users when it comes to capital expenditures. Most food manufacturers prefer to focus on making food rather than cleaning their wastewater.

Novel high-performance biogas reactors solve these problems through miniaturization. A 20-fold size reduction is achieved compared to conventional systems. The new technology used was developed in Japan in the early 1990s and is called microbial electrolysis. The electrolysis of wastewater is catalyzed by electroactive microorganisms on the anode (the positive electrode). The reaction products are CO2 (from organic matter) and nitrogen gas (N2 from ammonia).

Principle of a microbial electrolysis reactor. On the left anode, the organic material is oxidized to CO2. The free electrons are absorbed by the anode and transported to the cathode. Hydrogen gas (H2) is released there. CO2 and hydrogen form methane, the final microbial reaction product.

At the same time, hydrogen gas (H2) is generated at the cathode (the negative electrode). This hydrogen reacts with CO2 to form methane. The final methanation step completes the biocatalytic treatment of the wastewater. Gas grid injection is one possible use. But for cheese makers, the gas would be used on site to generate electricity and/or heat.

The reaction is accelerated using an applied voltage and is based on the laws of thermodynamics. As a result, the reactor volume can be reduced. The size reduction has several advantages. First, it makes biogas accessible in markets where it was previously not possible due to the high investment costs. Second, it enables higher throughput at a lower cost. Smaller units are mobile and can be shared, moved or rented. After all, food manufacturers want to do what they do best, which is to make food.

 

Image: Pixabay

Posted on

Nanostructured membranes improve the gas separation of carbon dioxide

To reduce greenhouse gas emissions, various technologies are in development requiring the separation of mixed gases, such as  CO2 and methane or CO2 and nitrogen gas (CO2/CH4 and CO2/N2). Compared to other separation technologies, polymer membranes are  good candidates for industrial use. This is due to their low operating costs, high energy efficiency and simple scalability.

The gas permeability and selectivity, as well as the cost of these polymer membranes are the crucial criteria for their industrial use. These criteria are influenced by molecular order processes during polymerization at nano- and micrometer levels. However, the processes regulating the molecular order of most common membranes do not occur on these levels. Hence, there is little control over them during manufacturing. Not much is known about materials with self organizing properties and their influence on molecular order and gas separation.

Chemists at the Technical University of Eindhoven in the Netherlands examined the effects of the layer distance within the membrane and its halogenation on the gastrunge and published their results in the MDPI Membranes journal. They focused on the separation of helium, CO2 and nitrogen. The researchers used liquid crystal membranes for their investigation. Liquid crystal molecules can align in various nanostructures. These structures vary depending on the manufacturing process and can therefore be controlled. As a result, liquid crystal membranes are ideal in order to investigate the influence of nanostructures on gas separation.

A frequently used manufacturing method is to commence the self organization of the reactive liquid crystal molecules in a cell with spacers. This helps to better control the membrane thickness and alignment and ultimately control the molecular orientation. The final network of the liquid crystal molecules and their fixation in nanostructures is required to achieve mechanical strength. For example, high ordered crystal membranes (i.e. not liquid crystals) have a lower gas permeability. Nonetheless, they also are characterized by a higher selectivity for helium and CO2 compared to nitrogen.

A lamellar morphology and the flow direction of the gas also have a great influence on selectivity and permeability of the membrane. It is also known that halogen atoms such as chlorine or fluorine improve CO2 permeability and selectivity by affecting both gas solubility and diffusion.

In the presented experiments, all liquid crystal membranes with similar chemical compositions, but different halogenated alkyl chains, were aligned. The CO2 sorption and the entire gas permeation were better if their layers were further apart. The gas solubility itself had no impact. This was confirmed by the increased gas diffusion coefficients, which were also determined in the experiments.

Bulky halogens had only limited influence on gas permeability and selectivity. The CO2 permeability of all halogenated liquid crystal membranes increased due to a slightly higher CO2 solubility and diffusion coefficients, which led to improved selectivity for CO2. The layer distance in particular was a crucial factor that directly influenced the diffusion coefficient. The researchers recommended that future investigations should focus on improving separation performance, for example by reducing the membrane thickness.

At Frontis Energy, we are looking forward to a good commercial product that can separate CO2 from gas mixtures, such as biogas, effectively and cheap.

Photo: Pixabay / SD-Pictures

Posted on

Bio-electrical system removes nitrogen from the wastewater

Hazardous compound removal from sewage such as organic matter and nitrogen makes wastewater treatment an energy intensive process. For example, treating activated sludge requires blowing oxygen or air into raw, unsettled sewage. This aeration significantly increases the cost of the wastewater treatment. About 5 kWh per kilogram nitrogen are required for aeration depending on the plant. The cost associated with energy consumption makes uof approximately EUR 500,000 per year in an average European wastewater treatment plant. This is up to one-third of the total operational costs of WWTP. It is therefore obvious that nitrogen removal from wastewater must become more economical.

Alternative approach: Microbial electrochemical technology

The conventional way of removing nitrogen is a cascade of nitrification and denitrification reactions. Nitrification that is, aerobic ammonium oxidation to nitrite and nitrate is carried out by ammonia-oxidizing bacteria. Subsequent denitrification is the reduction of nitrate to nitrogen gas (N2). In addition to the costly aeration process, the remaining intermediate products as nitrite and nitrate require further effluent treatment.

Instead of expensive pumping of oxygen into the wastewater, bioelectrical systems could accomplish the same result at a much lower cost. In such systems, an electron accepting anode is used as electron acceptor for microbial ammonium oxidation instead of oxygen, making aeration obsolete.

Complete conversion of ammonium to nitrogen gas

We previously reported the use of such an bio-electrical system to remove ammonia from wastewater in fed-batch reactors. Now, researchers of the University of Girona reported proof-of-concept on a novel technology. Their bioelectrical system is a complete anoxic reactor that oxidizes ammonium to nitrogen gas in continuous mode. The dual-chamber reactor nitrifies and denitrifies and ultimately removes nitrogen from the system.

The electricity-driven ammonium removal was demonstrated in continuously operated one-liter reactor at a rate of ~5 g / m3 / day. A complex microbial community was identified with nitrifying bacteria like Nitrosomonas as key organism involved anoxic ammonium oxidation.

From an application perspective, comparison between bioelectrical systems and aeration in terms of performance and costs is necessary. The researchers reported that the same removal range and treatment of the similar amounts of nitrogen was achieved but that their bioelectrical system converted almost all ammonium to dinitrogen gas (>97%) without accumulation of intermediates. Their system required about 0.13 kWh per kilogram nitrogen energy at a flow rate of 0.5 L / day. Using a bioelectrical system consumes 35 times less energy compared with classic aeration (~5 kWh per kilogram). At the same time, no hazardous intermediates like nitrite or NOx gases are formed.

Unveiling microbial-electricity driven ammonium removal

The new article also indicated potential clues for microbial degradation pathway that may lead to better understanding of the underlying processes of anoxic ammonium removal in bioelectrical systems.

The proposed nitrogen removal pathway was the bioelectrical oxidation of ammonia to nitrogen monoxide, possibly carried out by a microbe named Achromobacter. That was supposedly followed by the reduction of the nitrogen monoxide to nitrogen gas, a reaction that could have been performed by Denitrasisoma. Alternatively, three other secondary routes were considered: bioelectrical oxidation followed by anammox, or without nitrogen monoxide directly to N2. Some sort of electro-anammox may also be possible.

At Frontis Energy, we believe that the direct conversion of ammonium to nitrogen gas through the reversal of nitrogen fixation is a possibility as nitrogen fixation genes are ubiquitous in the microbial world and it would generate the universal bio-currency ATP rather than consuming it.

It was shown that Achromobacter sp. was the most abundant microbe (up to 60%, according to sequence reads) in the mixed community. However, anammox species (Candidatus Kuenenia and Candidatus Anammoximicrobium) and denitrifying bacteria (Denitratisoma sp.) have been also detected in the reactor.

Two possible electroactive reactions were identified: hydroxylamine and nitrite oxidation, reinforcing the role of the anode as the electron acceptor for ammonium oxidation. Data obtained from nitrite and nitrate tests suggested that both, denitrification and anammox based reactions could take place in the system to close the conversion.

As a result, ammonium was fully oxidized to nitrogen gas without accumulated intermediates. Taking it all together, it has been shown that ammonium can be removed in bioelectrical system operated in continuous flow. However, further reactor and process engineering combined with better understanding of the underlying microbial and electrochemical mechanisms will be needed for process scale up.

Experimental system set-up

  • The inoculum consisted of a 1:1 mix of biomass obtained from nitritation reactor and an aerobic nitrification reactor of an urban treatment plant
  • The reactor design was constructed of two 1 L rectangular chambers comprising an anode and cathode compartment
  • The separator, an anion exchange membrane,  was used to minimize the diffusion of ammonium to the cathode compartment
  • The anode and cathode chambers were filled with granular graphite as electrode support
  • Ag/AgCl reference electrode was used in the anode compartment
  • Two graphite rods were placed as current collectors in each chamber
  • The system was operated in batch and semi-continuous mode

Image: 5056468 / Pixabay

Posted on

Improving direct ethanol fuel cells by fluorine doping

Direct ethanol fuel cells (DEFCs) are fuel cells that run on ethanol to directly produce electrical power. Despite having much to offer they have not been forayed into. Ethanol can be made from biomass by yeasts and its oxidation products – CO2 and H2O – are hence environmentally friendly. The application of DEFCs could be a lucrative solution for vehicles due to the energy efficiency if mass-produced. Our current infrastructure for combustion fuels is ready for ethanol. DEFC usage would therefore be a sustainable and environment-friendly alternative to current internal combustion engines. Moreover, ethanol is liquid, which facilitates distribution, storage and use.

According to studies sponsored by  International Energy Agency (IEA), DEFCs deliver high power densities, culminating between 50 to 185 mW / cm2. Currently, DEFCs face multiple challenges such as slow redox kinetics, limited performance, and the high cost of electrocatalysts needed for DEFCs.

In a DEFC, the two key reactions are:

  1. Ethanol Oxidation Reaction (EOR)
  2. Oxygen Reduction Reaction (ORR)

Their sluggish rates have prevented widespread adoption of this technology. State-of-the-art DEFCs require expensive platinum-based materials to catalyze these reactions. Yet, they do not completely oxidize ethanol to CO2 to complete the EOR reaction, limiting the energy efficiency. One way to fix this issue is to separate and re-inject the unreacted ethanol. Since this adds more engineering to the fuel cell, a better solution is to find more efficient catalysts. Hence, to realize the true potential of DEFCs, is to find cheaper and more active catalysts for the two reactions in DEFCs.

The researchers at the University of Central Florida and their colleagues experimented on Pd–N–C catalyst and attempted to improve catalyst performance by introducing fluorine atoms. The team used alkaline membranes and platinum-free catalysts. Not only were these more cost-effective but also produced a high power output.

Previous research on electrocatalytic systems revealed that the local coordination environment (LCE) of the electrode surface is pivotal in tuning the activity of electrocatalysts made of carbon-supported metal nanoparticles. The study showed that introducing fluorine atoms in Pd–N–C catalysts regulated the LCE around the Pd, improving both activity and durability for the two key reactions. This improved the catalytic performance, and ultimately the fuel cell’s performance.

The new study demonstrated that fluorine doping rearranged the electron structure of the fuel cell catalyst. This substantially improved power density and ultimately the performance of the DEFC when compared with present-day benchmark catalysts. The experimental results on long-term stability demonstrated promising advancements towards practical applications of such catalysts in DEFCs.

Results

Upon experimental analysis, it was found that the fluorine atoms in the catalyst weakened carbon-nitrogen bond and pushed the N atoms towards palladium. This electron translocation efficiently regulated the LCE of palladium by forming palladium-nitrogen active sites for catalytic reactions.

The N-rich palladium surface promoted carbon-carbon bond cleavage and enabled complete ethanol oxidation. During the ORR, the N-rich palladium surface surface not only weakened CO2 adsorption but also created more accessible catalytic sites for rapid O2 adsorption.

According to the authors, a commonly occurring problem in DEFCs – the inability to complete the two key reactions – has been resolved. Their catalyst enhanced the overall performance of the fuel cell. The addition of fluorine also enhanced the durability of the catalyst by reducing the corrosion of carbon materials as well as inhibiting palladium migration and aggregation.

When the novel catalyst was tested in a DEFC, an output maximum power density of 0.57 W/cm2 was obtained. The fuel cell was stable for more than 5,900 hours. The proposed strategy, when experimented with using other carbon-supported metal catalysts, also gave improved results in activity and stability.

Outlook

The main shortcoming of DEFCs running in the alkaline condition is their durability. Currently, it is not sufficient for practical applications. Moreover, the anion-exchange membranes in use have two issues:

  • Structural stability of membrane is insufficient for long-term use
  • Carbonation occurs in presence of CO2 due to its reaction with hydroxide ions, ultimately degrading the catalyst.

Albeit stable for remarkable 5,900 hours, the membrane was replaced after 1,200 hours in the presented study. Since replacing membranes require complete disassembly of the cell, this is not a long-term practical solution.

Hence, there must be further research on increasing ionic conductivity and stability of anionic membranes for practical use of DEFC in alkaline conditions. Ideally, the hydroxide solution used to increase ionic conductivity is avoided to preserve energy density and reduce the complexity of the device. Solid oxide fuel cells offer a solution for these problems since the fuel is oxidized in gaseous form but their ceramic membrane are too fragile for mobile applications.

The current experiment makes significant strides in improving power density in DEFCs much more than any state-of-the-art DEFCs. The way ahead is further research to overcome these smaller obstacles in the long-term use of anionic membranes.

Experimental analysis

Materials used

Commercial Pd/C (10%, 8 nm Pd particles on activated carbon), as well as Pt/C (20%, 3 nm Pt particles on carbon black), were used as baseline catalysts. Also, Nafion™ solution (5%), carbon paper (TGP-H-060), and anion-exchange membranes (Fumasep FAS-PET-75)

Synthesis of heteroatom X-doped carbon (X–C, X=N, P, S, B, F)

Carbon black with abundant oxygen functional groups and melamine (C3H6N6) were mixed and ground, and finally pyrolyzed. After cooling to room temperature, N–C was obtained by washing with ethanol and water. The same method was used to synthesize P–C, S–C, B–C, and F–C from sodium hypophosphite anhydrous, sulfur powder, boric acid, and polyvinylidene difluoride.

Synthesis of hetero-atom fluorine-doped carbon catalysts

N–C and polyvinylidene difluoride were mixed and ground before adding them into a solution of acetone and water. After ultra sound treatment, the mixture was refluxed in an oil bath until fully dried. The mixture was then pyrolyzed and after cooling to room temperature, the samples were washed with ethanol and ultrapure water, followed by a vacuum to obtain the fluorinated catalyst support. The same method was used for the other precursors.

A microwave reduction method was used to synthesize palladium catalyst on the catalyst support. The content of palladium in all samples was kept at 1.0%, which was determined and double-confirmed by X-ray spectroscopy and inductively coupled plasma.

Electrochemical characterizations

For the electrical measurements, either a glassy carbon ring-disc electrode or rotating ring-disc electrode were used. The Fumasep membrane was used as an anion-exchange membrane, modified to change it to a hydroxide environment.

Reference

Chang et al., 2021, Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy 6, 1144–1153 https://doi.org/10.1038/s41560-021-00940-4

Image Source: P_Wei, Pixabay

Posted on

Pilot-scale microbial fuel cells produce electricity from wastewater

In wastewater treatment, aeration is an energy-intensive but necessary process to remove contaminants. Pumps blow air into the wastewater to supply the microbes in the treatment tank with oxygen. In return, these bacteria oxidize organic substances to CO2 and hence remove them from the wastewater. This process is the industrial standard and has proven itself for over a century. If the researchers at Washington State University and the University of Idaho have their way, that is changing now.

In their project, the researchers used a unique microbial fuel cell system they developed to replace aeration. Their novel wastewater treatment system cleans wastewater with the help of microorganisms that produce electricity. These microbes are called electrophiles.

The work should one day lead to less dependence on the energy-intensive treatment processes. Most of the energy in such processes is consumed in the activated sludge and its disposal. The energy consumption in water treatment produces around 4-5% of anthropogenic CO2 worldwide. to put that in perspective, according to the Air Transport Action Group in Geneva, international air transport produced 2.1% CO2 in 2019. The researchers published their work in the journal Bioelectrochemistry. In addition to cutting green house gas emissions, lowering the energy consumption of wastewater treatment would save billions in annual operation and maintenance costs.

Microbial fuel cells allow microbes to convert chemical energy into electricity, much like in a battery. In wastewater treatment, a microbial fuel cell can replace aeration while capturing electrons from wastewater organics. These electrons themselves are in turn a waste product of the microbial metabolism. All living organisms strive to discharge their excess electrons. This process is known as respiration or fermentation. The electricity generated the microbes can be used for useful applications in the wastewater treatment plant itself. The technology kills two birds with one stone. On the one hand, the treatment of the wastewater saves energy. On the other hand, it also generates electricity.

Up until now, microbial fuel cells have been used experimentally in wastewater treatment systems under ideal conditions, but under real and changing conditions they often fail. Microbial fuel cells lack regulation that controls the potential of anodes and cathodes and thus the cell potential. This can easily lead lead to a system failure. The entire cell must then be replaced.

To tackle this problem, the researchers added an additional reference electrode to the system that enables them to control their fuel cell. The system becomes more flexible. It can either work as a microbial fuel cell on its own and consume no energy, or it can be converted so that less energy is used for aeration while it purifies the wastewater more intensively. Frontis Energy uses a similar control system for its electrolysis reactors.

The system was operated for one year without major issues in the laboratory as well as a pilot in a wastewater treatment plant in Idaho. It removed contaminants at rates comparable to those in a classic aeration tanks. In addition, the microbial fuel cell could possibly be used completely independent of grid power. The researchers hope that one day it could be used in small wastewater treatment plants, such as cleaning livestock farms or in remote areas.

Despite the progress, there are still challenges to be overcome. They are complex systems that are difficult to build. At Frontis Energy we specialize in such systems and can help with piloting and commercialization.

(Photo: Wikipedia / National University of Singapore)

Posted on

Accelerated deforestation in the EU

Forests are vital to our society. In the EU, forests make up around 38% of the total land area. They are important carbon sinks as they eliminate around 10% of EU greenhouse gases. Efforts to conserve them are a key part of EU climate targets. However, the increasing demand for forest products poses challenges for sustainable forest management.

According to a report recently published in the renowned science magazine Nature, the EU’s deforested area has increased by 49% and with it the loss of biomass (69%). This is due to large-scale deforestation, which reduces the continent’s carbon absorption capacity and accelerates climate change.

The analyzed a series of very detailed satellite data. The authors of the report show that deforestation occurred primarily on the Iberian Peninsula, the Baltic States, and Scandinavia. Deforestation of forest areas increased by 49% between 2016 and 2018. Satellite images also show that the average area of ​​harvested land across Europe has increased by 34 percent, with potential implications for biodiversity, soil erosion and water regulation.

The accelerating deforestation could thwart the EU’s strategy to combat climate change, which aims in particular to protect forests in the coming years, the experts warn in their study. For this reason, the increasing use of forests is challenging to maintain the existing balance between the demand for wood and the need to preserve these key ecosystems for the environment. Typically, industries such as bioenergy or the paper industry are the driving forces behind deforestation.

The greatest acceleration in deforestation was recorded in Sweden and Finland. In these two countries, more than 50% of the increase in deforestation in Europe has been recorded. Next in line are Spain, Poland, France, Latvia, Portugal and Estonia, which together account for six to 30% of the increase, the study said.

Experts suggest linking deforestation and carbon emissions in model calculations before setting new climate targets. The increase in forest harvest is the result of the recent expansion of global wood markets, as evidenced by economic indicators for forestry, timber bioenergy and international trade. If such a high forest harvest continues, the EU’s vision of forest-based mitigation after 2020 could be compromised. The additional carbon losses from forests would require additional emission reductions in other sectors to achieve climate neutrality.

At Frontis Energy, we find the competition between bioenergy and this important carbon sink particularly disturbing, as both are strategies to mitigate global warming.

(Photo: Picography / Pixabay)

Posted on

High-performance biomass molecule for better Diesel fuel

In our previous blog posts we have discussed resource recovery from waste related to the wastewater treatment and showed improved and enforced regulations have a positive impact on water quality and public health. Now we show that clever catalytic processes can be used to extract valuable commodities from waste agricultural products.

Low-cost waste biomass can serves as renewable source to produce a sustainable alternative to fossil carbon resources in order to meet the need for the environmentally friendly energy. For example, the C2 and C4 ethers derived from carboxylic acids obtained from biomass are promising fuel candidates. It has been reported, that when using ethers biofuel parameters such as ignition quality and sooting have significantly improved compared to commercial petrodiesel (>86% yield sooting index reduction). Ignition quality (cetane number) was improved by more than 56%.

The scientists from National Renewable Energy Laboratory, together with their colleagues from Yale University, Argonne National Laboratory, and Oak Ridge National Laboratory are working on a joint project with the goal of co-optimization of fuels and engines. The research focuses on improving fuel economy and vehicle performance while at the same time reducing emissions through identification of blendstock derived from biomass.

In their recent article, published in the renown journal PNAS, a novel molecule, 4-butoxyheptane, has been isolated in a high-yielding catalytic process from lignocellulosic biomass. Due to its high oxygen content, this advantageous blendstock can improve the performance of diesel fuel by reducing the intrinsic sooting tendency of the fuel upon burning.

The research team has reported a “fuel-property-first” approach in order to accelerate the development process of producing suitable oxygenate diesel blendstocks.

This rational approach is based on following steps:

  1. Fuel Property Characterization – includes mapping and identification of accessible oxygenates products; predicting fuel properties of those products a priori by computationally screening
  2. Production process – development of the conversion pathway starting from biomass. Includes continuous, solvent-free synthesis process based on a metal/acid catalyst on a liter-scale production of the chosen compound
  3. Testing and analysis – with the goal to validate and compare fuel property measurements against predictions

Fuel properties of target oxygenates that have been investigated are related to the health- and safety- aspects such as flash point, biodegradation potential, and toxicity/water solubility, as well as market and environmental aspects such as ignition quality (cetane number), viscosity, lower heating value and sooting potential reduction with oxygenated blendstocks. As a result, 4-butoxyheptane, looked as the most promising molecule to blend with and improve traditional diesel. It has been shown, that the fuel property measurements largely agreed with predictive estimations, validating accuracy of the a priori approach for blendstock selection.

The mixture at 20-30% blend of 4-butoxyheptane molecule into diesel fuel has been suggested as favorable. The improvement in autoignition quality as well as significant reduction of yield sooting index from 215 to 173 (20% reduction) demonstrates that the incorporation of this molecule could improve diesel emission properties without sacrificing performance. In terms of flammability, toxicity, and storage stability, the oxygenate fuel has been evaluated to be at low-risk.

Life-cycle analysis show that this mixture could be cost-competitive and have the potential in significant greenhouse gas reductions (by 50 to 271%) in comparison to petrodiesel.

As research is a perpetual process, more of it is necessary and should include testing of the bioblendstock in an actual engine and production of the biofuel in an integrated process directly from biomass.

(Mima Varničić, 2020, photo: Pixabay)

Posted on

Global wastewater resources estimated

In our last post on water quality in China, we pointed out a study that shows how improved wastewater treatment has a positive effect on the environment and ultimately on public health. However, wastewater treatment requires sophisticated and costly infrastructure. This is not available everywhere. However, extracting resources from wastewater can offset some of the costs incurred by plant construction and operation. The question is how much of a resource is wastewater.

A recent study published in the journal Natural Resources Forum tries to answer that question. It is the first to estimate how much wastewater all cities on Earth produce each year. The amount is enormous, as the authors say. There are currently 380 billion cubic meters of wastewater per year worldwide. The authors omitted only 5% of urban areas by population.

The most important resources in wastewater are energy, nutrients like nitrogen, potassium and phosphorus, and the water itself. In municipal wastewater treatment plants they come from human excretions. In industry and agriculture they are remnants of the production process. The team calculated how much of the nutrient resources in the municipal wastewater is likely to end up in the global wastewater stream. The researchers come to a total number of 26 million tons per year. That is almost eighty times the weight of the Empire State Building in New York.

If one would recover the entire nitrogen, phosphorus and potassium load, one could theoretically cover 13% of the global fertilizer requirement. The team assumed that the wastewater volume will likely continue to increase, because the world’s population, urbanization and living standards are also increasing. They further estimate that in 2050 there will be almost 50% more wastewater than in 2015. It will be necessary to treat as much as possible and to make greater use of the nutrients in that wastewater! As we pointed out in our previous post, wastewater is more and more causing environmental and public health problems.

There is also energy in wastewater. Wastewater treatment plants industrialized countries have been using them in the form of biogas for a long time. Most wastewater treatment plants ferment sewage sludge in large anaerobic digesters and use them to produce methane. As a result, some plants are now energy self-sufficient.

The authors calculated the energy potential that lies hidden in the wastewater of all cities worldwide. In principle, the energy is sufficient to supply 500 to 600 million average consumers with electricity. The only problems are: wastewater treatment and energy technology are expensive, and therefore hardly used in non-industrialized countries. According to the scientists, this will change. Occasionally, this is already happening.

Singapore is a prominent example. Wastewater is treated there so intensively that it is fed back into the normal water network. In Jordan, the wastewater from the cities of Amman and Zerqa goes to the municipal wastewater treatment plant by gravitation. There, small turbines are installed in the canals, which have been supplying energy ever since their construction. Such projects send out a signals that resource recovery is possible and make wastewater treatment more efficient and less costly.

The Frontis technology is based on microbial electrolysis which combines many of the steps in wastewater treatment plants in one single reactor, recovering nutrients as well as energy.

(Photo: Wikipedia)