Posted on

Trace metals accelerate hydrogen evolution reaction of biocathodes in microbial electrolysis cells

It has been known that microbial biofilms on biocathodes improve the productions rates of hydrogen evolution reaction (HER). This is the process of producing hydrogen gas from water using electricity. The hydrogen evolution was even accelerated when the biofilm colonizing a biocathode was killed. Different types of bacteria, such as exoelectrogenic (Geobacter sulfurreducens), non-exoelectrogenic (Escherichia coli), and a hydrogenotrophic methanogen (Methanosarcina barkeri) accomplished the feat but Geobacter was the fastest. Even cell debris and metalloproteins catalyzed HER. Therefore, living cells are not required for enhanced HER, and biocathodes could be a cheap and environmentally friendly alternative to precious metal catalysts. While the authors back then speculated on the role of metalloproteins, a new publication in Electrochimica Acta by researchers of Wageningen University shows that indeed trace metals in the growth medium are responsible for the observed rate acceleration.

The authors used a mixture of metal compounds present in the microbial medium such as cobalt, copper, iron, manganese, molybdenum, nickel and zinc salts as well as the metal chelating agent ethylenediaminetetraacetic acid (EDTA) as the catalyst for the HER under microbial compatible conditions (near-neutral pH, mesophilic temperature, aquous electrolyte).

They performed a series of experiments to investigate the effect of different parameters on the catalytic activity and stability of the trace metal mix medium. These parameters included the concentration of the metal compounds, the presence or absence of EDTA, the type of electrode material, and the type of electrolyte. Various techniques to measure the cathodic current, the hydrogen production rate, the overpotential, and the exchange current density of the HER were used.

The results show that the trace metal mix medium increased the cathodic current and the electron recovery into hydrogen significantly, and that copper and molybdenum were the most active compounds in the mix. This is surprising because the previous publication found mostly cobalt and iron compounds on the surface of the biocathodes. Both of which are good hydrogen catalysts as well, whereas molybdenum sulfide for example, did not increase production rates in methanogenic microbial electrolysis cells. HER is the rate determining reaction in methanogenic electrolysis cells because it is the intermediate:

4 H2 + CO2 → CH4 + 2 H2O

The results also showed that removing EDTA from the mix improved the catalyst performance further, as EDTA acted as a complexing (chelating) agent that reduced the availability of metal ions for HER. The results also showed that carbon-based electrodes were more suitable than metal-based electrodes for HER, possibly because they have a higher surface area. This is an interesting result because it was previously thought that the mechanism behind the better performance of carbon electrodes was the microbial preference to adhere to carbon than to metal surfaces. The results also showed that using microbial growth medium as the electrolyte did not affect the catalyst performance significantly, as compared to using phosphate buffer solution.

The authors concluded that their method was a simple, cheap, and environmentally friendly way to prepare effective catalysts for HER using trace metals from microbial growth media. They suggested that these catalysts could be integrated in biological systems for in situ hydrogen production in bio-electrochemical and fermentation processes. Indeed, it is inevitable not to use trace metals in microbial electrolysis cells as they are essential to sustain growth.

Both articles demonstrate that trace metals can play an important role in the HER, and that they can be derived from biological sources. However, they also have some limitations and challenges, such as the stability, selectivity, and scalability of the catalysts. Therefore, further research is needed to optimize the performance and applicability of trace metal-based catalysts for HER.

(Image: US National Science Foundation)

Posted on

Multifunctional iridium-based catalyst for water electrolysis and fuel cells

Most of the world’s energy needs are currently served by fossil fuels. The International Energy Agency (IEA) annual projection indicates that the global energy demand will increase twice by 2040, mostly in emerging markets and developing economies.

To meet increasing global energy demands and to replace depleting fossil fuels, policy makers believe that alternative clean and renewable energy sources are the best solution. Such renewable energy sources can be electricity for solar, wind or geothermal energy as well as hydroelectric power. The latter, however, has reached a certain degree of saturation in fully industrialized countries.

While solar and wind energy are available in most places of the world at more or less reasonable cost, their biggest disadvantage is that they are intermittent, difficult to store and transport, and difficult to tank in cars, planes and ships. Converting solar and wind energy in hydrogen gas could be an elegant way out of this dilemma as the fuel’s resource can be abundant water. Diversifying the energy mix by adding hydrogen at acceptable cost may prove more efficient with a lower environmental footprint as compared to other fuels. Hence, the interest for  water electrolysis and fuel cells  is constantly growing.

Most of today’s hydrogen is produced through steam reforming of natural gas. However, it can also be made from water electrolysis. Electrolysis is two-electrode reactions: the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode.

Fuel cells reverse the reaction and harvest electricity produced by fusing the hydrogen and oxygen atoms back together to obtain water. While there are different types of fuel cells, those commonly used with hydrogen as fuel are polymer electrolyte membrane fuel cells, or PEMFC. The PEM acronym is also often used for proton exchange membranes, which can be made of polymers, for example Nafion™.  In PEMFC, energy is liberated through the hydrogen oxidation reaction (HOR) at the anode and oxygen reduction reaction (ORR) at the cathode. To become economically feasible, there are still technical challenges of water electrolyzers and fuel cells to overcome. Some technical problems result in serious system degradation.

Water is pumped into a fuel cell where two electrodes split it into hydrogen (H2) and oxygen (O2)

A study published in Nature Communications by researcher of Technical University Berlin and the Korea Institute of Science and Technology, suggests using a novel iridium electrocatalyst with multifunctional properties and remarkable reversibility. While iridium also is precious and one of the platinum group metals, the novel Ir-catalyst was designed for the processes where electrochemical reactions change rapidly, such as the voltage reversal of water electrolysis and PEMFC systems. This would integrate the two energy conversion systems in one and therefore be a great economical benefit over existing solutions.

Challenges

Unexpectedly changing operating conditions such as a sudden shut-down of water electrolysis result in increased hydrogen electrode potentials which lead to degradation hydrogen producing electrodes.

In fuel cells, fuel starvation can occur at the anode, leading to voltage reversal. Ultimately, this causes degradation of fuel cell components such as the catalyst support, gas diffusion layer and flow field plates. It has been proposed to introduce a water oxidation catalyst to the anode of the PEMFcs in order to promote OER since it is the reaction that competes with the carbon corrosion reaction.

Design of a unique iridium-based multifunctional catalyst

For the study, a crystalline multifunctional iridium nanocatalyst has been designed considering the mentioned challenges in water electrolysis and fuel cell operation.

The reason why an iridium-based material has been selected is its remarkable OER activity as well as good HER and HOR catalytic activity. It is a superior material for anodes and cathodes in electrolyzers and for anodes of PEMFC. For comparisons, the researchers synthesized two catalysts  using the modified impregnation method: carbon-supported IrNi alloy nanoparticles with high crystallinity (IrNi/C-HT) and with low crystallinity (IrNi/C-LT).

The findings indicated that the surface of IrNi/C-HT had reversibly converted between a metallic character and an oxidic IrNiOx character. Under OER operation that is, anodic water oxidation, the crystalline nanoparticles form an atomically-thin IrNiOx layer. This oxide layer reversibly transforms into metallic iridium when returning towards more cathodic potentials. The reversal allows the catalyst to return to its high HER and HOR activity.

The experiments also revealed that the performance of IrNi/C-LT sharply decrease after carrying out the OER. The catalyst degradation was due to the irreversible destruction of the amorphous IrNiOx surface.

In situ/operando X-ray absorption near edge structure (XANES) and depth-resolving X-ray photoelectron spectroscopy (XPS) profiles, suggested that the thin layers of IrNiOx possess an increase in the number of d-band holes during OER, due to which catalyst IrNi/C-HT exhibited excellent OER activity. As expected, under HER conditions, the thin IrNiOx layer was reversibly converted to metallic surface. The mechanistic study of the reversible catalytic activity of the IrNiOx layer has been additionally analyzed by electrochemical flow-cell using inductively coupled plasma-mass spectrometry (ICP-MS). The results demonstrate that the reversible IrNiOx layers come from a dissolution and re-deposition mechanism.

In addition, the performance and catalytic reversibility of synthetized electrocatalysts were used to perform HOR and OER in a real electrochemical device and tested under fuel starvation of the PEMFC. Using voltage reversal, the fuel cell was converted into an electrolyzer.

Fuel starvation experiments were conducted in a single PEM fuel cell built using IrNi/C-HT and IrNi/C-LT as the catalytically active components in the anode catalyst layer. The initial fuel cell performance of IrNi/C-LT and -HT was lower than that of the commercial Pt/C catalyst due to the lower HOR and metal composition.

Further results demonstrate that IrNi/C-HT catalyst retained its bifunctional catalytic activity, reversibing between HER and OER in a real device. This approach promoted the reversibility of nanocatalysts, which enable a variety of electrochemical reactions and can be used as catalysts to resist the reverse voltage in fuel cells and water electrolysis systems.

At Frontis Energy, we are looking forward to adding the novel iridium catalyst to our Fuel Cell Shop as soon as it becomes available.

Photo: Iridium / Wikipedia