Posted on

Trace metals accelerate hydrogen evolution reaction of biocathodes in microbial electrolysis cells

It has been known that microbial biofilms on biocathodes improve the productions rates of hydrogen evolution reaction (HER). This is the process of producing hydrogen gas from water using electricity. The hydrogen evolution was even accelerated when the biofilm colonizing a biocathode was killed. Different types of bacteria, such as exoelectrogenic (Geobacter sulfurreducens), non-exoelectrogenic (Escherichia coli), and a hydrogenotrophic methanogen (Methanosarcina barkeri) accomplished the feat but Geobacter was the fastest. Even cell debris and metalloproteins catalyzed HER. Therefore, living cells are not required for enhanced HER, and biocathodes could be a cheap and environmentally friendly alternative to precious metal catalysts. While the authors back then speculated on the role of metalloproteins, a new publication in Electrochimica Acta by researchers of Wageningen University shows that indeed trace metals in the growth medium are responsible for the observed rate acceleration.

The authors used a mixture of metal compounds present in the microbial medium such as cobalt, copper, iron, manganese, molybdenum, nickel and zinc salts as well as the metal chelating agent ethylenediaminetetraacetic acid (EDTA) as the catalyst for the HER under microbial compatible conditions (near-neutral pH, mesophilic temperature, aquous electrolyte).

They performed a series of experiments to investigate the effect of different parameters on the catalytic activity and stability of the trace metal mix medium. These parameters included the concentration of the metal compounds, the presence or absence of EDTA, the type of electrode material, and the type of electrolyte. Various techniques to measure the cathodic current, the hydrogen production rate, the overpotential, and the exchange current density of the HER were used.

The results show that the trace metal mix medium increased the cathodic current and the electron recovery into hydrogen significantly, and that copper and molybdenum were the most active compounds in the mix. This is surprising because the previous publication found mostly cobalt and iron compounds on the surface of the biocathodes. Both of which are good hydrogen catalysts as well, whereas molybdenum sulfide for example, did not increase production rates in methanogenic microbial electrolysis cells. HER is the rate determining reaction in methanogenic electrolysis cells because it is the intermediate:

4 H2 + CO2 → CH4 + 2 H2O

The results also showed that removing EDTA from the mix improved the catalyst performance further, as EDTA acted as a complexing (chelating) agent that reduced the availability of metal ions for HER. The results also showed that carbon-based electrodes were more suitable than metal-based electrodes for HER, possibly because they have a higher surface area. This is an interesting result because it was previously thought that the mechanism behind the better performance of carbon electrodes was the microbial preference to adhere to carbon than to metal surfaces. The results also showed that using microbial growth medium as the electrolyte did not affect the catalyst performance significantly, as compared to using phosphate buffer solution.

The authors concluded that their method was a simple, cheap, and environmentally friendly way to prepare effective catalysts for HER using trace metals from microbial growth media. They suggested that these catalysts could be integrated in biological systems for in situ hydrogen production in bio-electrochemical and fermentation processes. Indeed, it is inevitable not to use trace metals in microbial electrolysis cells as they are essential to sustain growth.

Both articles demonstrate that trace metals can play an important role in the HER, and that they can be derived from biological sources. However, they also have some limitations and challenges, such as the stability, selectivity, and scalability of the catalysts. Therefore, further research is needed to optimize the performance and applicability of trace metal-based catalysts for HER.

(Image: US National Science Foundation)

Posted on

Light-driven process turns greenhouse gases into valuable products

Much research has been done in order to reduce the use of fossil petroleum products as fuels. In that respect syngas (synthetic gas) seems as a great opportunity for sustainable energy developments. Syngas is the mixture composed of hydrogen (H2) and carbon monoxide (CO) as its main components. It represents an important chemical feedstock used widely for industrial processes for generating chemicals and fuels:

Global use of syngas in industrial processes.

Syngas can be produced from methane (CH4) in a reforming reaction with water (H2O), oxygen (O2) or carbon dioxide (CO2). The process called methane dry reforming (MDR) can be combined with carbon dioxide:

CH4 + CO2 → 2 H2 + 2 CO

It is an environmentally friendly path, turning two greenhouse gases into a valuable chemical feedstock.

However, the MDR is process requires chemical catalysts and high temperatures in the range between 700 − 1,000°C. Usually, it suffers from coke deposition and, in consequence, catalyst deactivation.

Some chemists have recently demonstrated that light, and not heat, might be a more effective solution for this energy-hungry reaction.

The photocatalytic solution

A team of researchers at the Rice University in Houston, Texas, together with colleagues from Princeton University and the University of California have developed superior light-stimulated catalysts that can efficiently power MDR reactions without any heat input. This work has been published in the prestigious journal Nature Energy.

They have reported a highly efficient and coke-resistant plasmonic photocatalyst containing precisely one ruthenium (Ru) atom for every 99 copper (Cu) atoms. The isolated single-atom of Ru obtained on Cu antenna nanoparticles provides high catalytic activity for the MDR reaction. On the other side, Cu antennas allow strong light adsorption and under illumination and deliver hot electrons to ruthenium atoms. The researchers suggested that both, hot-carrier generation and single-atom structure are essential for excellent catalytic performance in terms of efficiency and coking resistance.

The optimal Cu-Ru ratio have been investigated in synthesized series of CuxRuy catalysts with varying molar ratios of plasmonic metal (Cu) and catalytic metal (Ru), where x,y are atomic percentage of Cu and Ru. Overall, the Cu19.8Ru0.2 was the most promising composition in terms of selectivity, stability and activity. In comparison to pure Cu nanoparticles, the Cu19.8Ru0.2 mix exhibits increased photocatalytic reaction rates (approx. 5.5 times higher) and improved stability with its performance maintained over 20 h period. Calculations showed that isolated Ru-atoms on Cu lower the activation barrier for the methane dehydrogenation step in comparison to pure Cu without promoting undesired coke formation.

In addition, the research has been supported by different methods (CO-DRIFTS with DFT) in order to unravel and prove single-atom Ru structures on Cu nanoparticles occurring in Cu19.9Ru0.1 and Cu19.8Ru0.2 compositions.

The comparison between thermocatalytic and photocatalytic activity at the same surface for MDR has also been demonstrated. The thermocatalytic reaction rate at 726°C (approx. 60 µmol CH4 / g / s) was less than 25% of photocatalytic reaction rate under white-light illumination with no external heat (approx. 275 µmol CH4 / g / s). This enhancement in the activity is attributed to the hot-carrier generated mechanism which is predominant in the photocatalytic MDR. The role of the hot-carrier is an increase in C−H activation rates on Ru as well as improved H2 desorption.

The scientists also reported the catalyst achieving a turnover frequency of 34 mol H2  / mol Ru / s and photocatalytic stability of 50 h under focused white light illumination (19.2 W / cm2) with no external heat.

As the synthesized photocatalysts is primarily based on Cu which is an abundant element, this approach provides a promising, sustainable catalyst operating at low-temperatures for MDR. This allows cheaper syngas production at higher rates, bringing us closer to a clean burning carbon fuel.

(Photo: Wikipedia)

Posted on

Cheap, high-octane biofuel discovered

Researchers from the National Renewable Energy Laboratory (NREL) have developed a cheap method for producing high-octane gasoline from methanol. They recently published their method in the journal Nature Catalysis. Methanol can be synthesized from CO2 via various routes, as we reported last year. Biomass, such as wood, is one possibility.

The production of biofuels from wood, however, is too expensive to compete with fossil fuels. To find a solution to this problem, the researchers combined their basic research with an economic analysis. The researchers initially aimed at the most expensive part of the process. Thereafter, the researchers found methods to reduce these costs with methanol as an intermediate.

So far, the cost of converting methanol to gasoline or diesel was about $1 per gallon. The researchers have now reached a price of about $0.70 per gallon.

The catalytic conversion of methanol into gasoline is an important research area in the field of CO2 recovery. The traditional method is based on multi-stage processes and high temperatures. It is expensive, producing low quality fuel in small quantities. Thus, it is not competitive with petroleum-based fuels.

Hydrogen deficiency was the initially problem the researcher had to overcome. Hydrogen is the key energy containing element in hydrocarbons. The researchers hypothesized that using the transition metal copper would solve this problem, which it did. They estimated that the copper-infused catalyst resulted in 38% more yield at lower cost.

By facilitating the reintegration of C4 byproducts during the homologation of dimethyl ether, the copper zeolite catalyst enabled this 38% increase in product yield and a 35% reduction in conversion cost compared to conventional zeolite catalysts. Alternatively, C4 by-products were passed to a synthetic kerosene meeting five specifications for a typical jet fuel. Then, the fuel synthesis costs increased slightly. Even though the cost savings are minimal, the resulting product has a higher value.

Apart from the costs, the new process offers users further competitive advantages. For example, companies can compete with ethanol producers for credits for renewable fuels (if the carbon used comes from biogas or household waste). The process is also compatible with existing methanol plants that use natural gas or solid waste to produce syngas.