Posted on

You Can Have the Pie and Eat It

In Paris, humanity has set itself the goal of limiting global warming to 1.5 °C. Most people believe that this will be accompanied by significant sacrifice of quality of life. That is one reason why climate protection is simply rejected by many people, even to the point of outright denial. At Frontis Energy, we think we can protect the climate and live better. The latest study published in Nature Energy by a research group around Arnulf Grubler of the International Institute for Applied Systems Analysis in Laxenburg, Austria, has now shown that we have good reasons.

The team used computer models to explore the potential of technological trends to reduce energy consumption. Among other things, the researchers said that the use of shared car services will increase and that fossil fuels will give way to solar energy and other forms of renewable energy. Their results show that global energy consumption would decrease by about 40% regardless of population, income, and economic growth. Air pollution and demand for biofuels would also decrease, which would improve health and food supplies.

In contrast to many previous assessments, the group’s findings suggest that humans can limit the temperature rise to 1.5 °C above preindustrial levels without resorting to drastic strategies to extract CO2 from the atmosphere later in the century.

Now, one can argue whether shared car services do not cut quality of life. Nevertheless, we think that individual mobility can be maintained while protecting our climate. CO2 recovery for the production of fuels (CO2 recycling that is) is such a possibility. The Power-to-Gas technology is the most advanced version of CO2 recycling and should certainly be considered in future studies. An example of such an assessment of the power-to-gas technology was published by a Swiss research group headed by Frédéric Meylan, who found that the carbon footprint can be neutralized with conventional technology after just a few cycles.

(Picture: Pieter Bruegel the Elder, The Land of Cockaigne, Wikipedia)

Posted on

Mapping Waste-to-Energy

Most readers of our blog know that waste can be easily converted into energy, such as in biogas plants. Biogas, biohydrogen, and biodiesel are biofuels because they are biologically produced by microorganisms or plants. Biofuel facilities are found worldwide. However, nobody knows exactly where these biofuel plants are located and where they can be operated most economically. This knowledge gap hampers market access for biofuel producers.

At least for the United States − the largest market for biofuels − there is now a map. A research team from the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) published a detailed analysis of the potential for waste-to-energy in the US in the journal Renewable and Sustainable Energy Reviews.

The group focused on liquid biofuels that can be recovered from sewage sludge using the Fischer-Tropsch process. The industrial process was originally developed in Nazi Germany for coal liquefaction, but can also be used to liquefy other organic materials, such as biomass. The resulting oil is similar to petroleum, but contains small amounts of oxygen and water. A side effect is that nutrients, such as phosphate can be recovered.

The research group coupled the best available information on these organic wastes from their database with computer models to estimate the quantities and the best geographical distribution of the potential production of liquid biofuel. The results suggest that the United States could produce more than 20 billion liters of liquid biofuel per year.

The group also found that the potential for liquid biofuel from sewage sludge from public wastewater treatment plants is 4 billion liters per year. This resource was found to be widespread throughout the country − with a high density of sites on the east cost, as well as in the largest cities. Animal manure has a potential for 10 billion liters of liquid biofuel per year. Especially in the Midwest are the largest untapped resources.

The potential for liquid biofuel from food waste also follows the population density. For metropolitan areas such as Los Angeles, Seattle, Las Vegas, New York, etc., the researchers estimate that such waste could produce more than 3 billion liters per year. However, food leftovers also had the lowest conversion efficiency. This is also the biggest criticism of the Fischer-Tropsch process. Plants producing significant quantities of liquid fuel are significantly larger than conventional refineries, consume a lot of energy and produce more CO2 than they save.

Better processes for biomass liquefaction and more efficient use of biomass still remain a challenge for industry and science.

(Photo: Wikipedia)

Posted on

The Photosynthetic CO2 Race − Plants vs. Algae

Algae store CO2 but also release it. Some of us may know that. However, so far it was unknown that algae may release additional CO2 due to global warming. That’s what researcher Chao Song and his colleagues of the University of Georgia in Athens, GA, found out.

As they published in the journal Nature Geoscience, the metabolism of algae and other microbes is accelerated by higher water temperatures in large streams. This could lead to some rivers releasing more CO2 than they do now. This could, in turn, further accelerate global warming. Although photosynthesis in algae would accelerate, plants along the river banks would be even faster. Decomposition of the plant material would immediately release the so fixed CO2. With extra nutrients from plants, competing microorganisms would overgrow the river algae or the algae would degrade the plant material themselves.

To calculate the CO2 net effect, scientists monitored temperature, dissolved oxygen, and other parameters in 70 rivers worldwide. Then they used their data for computer models. These models suggest that over time, accelerated photosynthesis in some rivers may not keep pace with plant growth. This net increase of 24% of the CO2 released from rivers could mean an additional global temperature increase of 1 °C.

However, the computer model still lacks some data. For example, the sedimentation rates are not taken into account. In addition, not all banks grow plants. Many rivers pass only sparsely vegetated land. As always, more research is needed to get better answers.

(Photo: Wikipedia)