Posted on

Ammonia energy storage #3

As a loyal reader or loyal reader of our blog, you will certainly remember our previous publications on ammonia energy storage. There, we describe possible ways to extract ammonia from the air, as well as the recovery of its energy in the form of methane (patent pending WO2019/079908A1). Since global food production requires large amounts of ammonia fertilizers, technologies for extraction from air is already very mature. These technologies are essentially all based on the Haber-Bosch process, which was industrialized at the beginning of the last century. During this process, atmospheric nitrogen (N2) is reduced to ammonia (NH3). Despite the simplicity of the molecules involved, the cleavage of the strong nitrogen−nitrogen bonds in N2 and the resulting nitrogen−hydrogen bonds pose a major challenge for catalytic chemists. The reaction usually takes place under harsh conditions and requires a lot of energy, i.e. high reaction temperatures, high pressures and complicated combinations of reagents, which are also often expensive and energy-intensive to manufacture.

Now, a research group led by Yuya Ashida has published an article in the renowned journal Nature, in which they show that a samarium compound in aqueous solution combined with a molybdenum catalyst can form ammonia from atmospheric nitrogen. The work opens up new possibilities in the search for ways to ammonia synthesis under ambient conditions. Under such conditions, less energy is required to produce ammonia, resulting in higher energy efficiency for energy storage. In today’s Haber-Bosch process, air and hydrogen gas are combined via an iron catalyst. The resulting global ammonia production of this process ranges from 250 to 300 tonnes per minute, delivering fertilizers that provide nearly 60% of the world’s population (The Alchemy of Air, available at Amazon).

Comparison of different approaches to produce ammonia. Top: In the industrial Haber-Bosch synthesis of ammonia (NH3), nitrogen gas (N2) reacts with hydrogen molecules (H2), typically in the presence of an iron catalyst. The process requires high temperatures and pressures, but is thermodynamically ideal because only little energy is wasted on side reactions. Center: Nitrogenase enzymes catalyze the reaction of six-electron (e) nitrogen and six protons (H+) under ambient conditions to form ammonia. However, two additional electrons and protons form one molecule of H2. The conversion of ATP (the biological energy “currency”) into ADP drives the reaction. This reaction has a high chemical overpotential. It consumes much more energy than is needed for the actual ammonia forming reaction. Bottom: In the new reaction proposed by Ashida and colleagues, a mixture of water and samarium diiodide (SmI2) is converted to ammonia using nitrogen under ambient conditions and in the presence of a molybdenum catalyst. SmI2 weakens the O−H bonds of the water and generates the hydrogen atoms, which then react with atmospheric nitrogen.

On industrial scale, ammonia is synthesized at temperatures that exceed 400°C and pressures of approximately 400 atmospheres. These conditions are often referred to as “harsh”. During the early days, these harsh conditions were difficult to control. Fatal accidents were not uncommon in the early years of the Haber-Bosch development. This has motivated many chemists to find “milder” alternatives. After all, this always meant searching for new catalysts to lower operating temperatures and pressures. The search for new catalysts would ultimately reduce capital investment in the construction of new fertilizer plants. Since ammonia synthesis is one of the largest producers of carbon dioxide, this would also reduce the associated emissions.

Like many other chemists before them, the authors have been inspired by nature. Nitrogenase enzymes carry out the biological conversion of atmospheric nitrogen into ammonia, a process called nitrogen fixation. On recent Earth, this process is the source of nitrogen atoms in amino acids and nucleotides, the elemental building blocks of life. In contrast to the Haber-Bosch process, nitrogenases do not use hydrogen gas as a source of hydrogen atoms. Instead, they transfer protons (hydrogen ions, H+) and electrons (e) to each nitrogen atom to form N−H bonds. Although nitrogenases fix nitrogen at ambient temperature, they use eight protons and electrons per molecule N2. This is remarkable because the stoichiometry of the reaction requires only six each. This way, nitrogenases provide the necessary thermodynamic drive for nitrogen fixation. The excess of hydrogen equivalents means that nitrogenases have a high chemical overpotential. That is, they consume much more energy than would actually be needed for nitrogen fixation.

The now published reaction is not the first attempt to mimic the nitrogenase reaction. In the past, metal complexes were used with proton and electron sources to convert atmospheric nitrogen into ammonia. The same researchers have previously developed 8 molybdenum complexes that catalyze nitrogen fixation in this way. This produced 230 ammonia molecules per molybdenum complex. The associated overpotentials were significant at almost 1,300 kJ per mole nitrogen. In reality, however, the Haber-Bosch process is not so energy-intensive given the right catalyst is used.

The challenge for catalysis researchers is to combine the best biological and industrial approaches to nitrogen fixation so that the process proceeds at ambient temperatures and pressures. At the same time, the catalyst must reduce the chemical overpotential to such an extent that the construction of new fertilizer plants no longer requires such high capital investments. This is a major challenge as there is no combination of acids (which serve as a proton source) and reducing agents (the electron sources) available for the fixation at the thermodynamic level of hydrogen gas. This means that the mixture must be reactive enough to form N−H bonds at room temperature. In the now described pathway with molybdenum and samarium, the researchers have adopted a strategy in which the proton and electron sources are no longer used separately. This is a fundamentally new approach to catalytic ammonia synthesis. It makes use of a phenomenon known as coordination-induced bond weakening. In the proposed path, the phenomenon is based on the interaction of samarium diiodide (SmI2) and water.

Water is stable because of its strong oxygen-hydrogen bonds (O−H). However, when the oxygen atom in the water is coordinated with SmI2, it exposes its single electron pair and its O−H bonds are weakened. As a result, the resulting mixture becomes a readily available source of hydrogen atoms, protons and electrons, that is. The researchers around Yuya Ashida use this mixture with a molybdenum catalyst to fix nitrogen. SmI2-water mixtures are therefore particularly suitable for this type of catalysis. In them, a considerable coordination-induced bond weakening was previously measured, which was used inter alia for the production of carbon-hydrogen bonds.

The extension of this idea to catalytic ammonia synthesis is remarkable for two reasons. First, the molybdenum catalyst facilitates ammonia synthesis in aqueous solution. This is amazing because molybdenum complexes in water are usually degraded. Second, the use of coordination-induced bond weakening provides a new method for nitrogen fixation at ambient conditions. This also avoids the use of potentially hazardous combinations of proton and electron sources which are a fire hazard. The authors’ approach also works when ethylene glycol (HOCH2CH2OH) is used instead of water. Thus, the candidates for proton and electron sources are extended by an additional precursor.

Ashida and colleagues propose a catalytic cycle for their process in which the molybdenum catalyst initially coordinates to nitrogen and cleaves the N−N bond to form a molybdenum nitrido complex. This molybdenum nitrido complex contains the molybdenum-nitrogen triple bond. The SmI2-water mixture then delivers hydrogen atoms to this complex, eventually producing ammonia. The formation of N−H bonds with molybdenum nitrido complexes represents a significant thermodynamic challenge since the N−H bonds are also weakened by the molybdenum. Nevertheless, the disadvantages are offset by the reduction of the chemical overpotential. The SmI2 not only facilitates the transfer of hydrogen atoms, but also keeps the metal in a reduced form. This prevents undesired molybdenum oxide formation in aqueous solution.

The new process still has significant operational hurdles to overcome before it can be used on an industrial scale. For example, SmI2 is used in large quantities, which generates a lot of waste. The separation of ammonia from aqueous solutions is difficult in terms of energy consumption. However, if the process were used for energy storage in combination with our recovery method, the separation would be eliminated from the aqueous solution. Finally, there is still a chemical overpotential of about 600 kJ/mol. Future research should focus on finding alternatives to SmI2. These could be based, for example, on metals that occur more frequently than samarium and promote coordination-induced bond weakening as well. As Fritz Haber and Carl Bosch have experienced, the newly developed method will probably take some time for development before it becomes available on industrial scale.

(Photo: Wikipedia)

Posted on

Melting ice sheets in Greenland contribute 25% to sea level rise

Recently we reported the loss of snow cover in Europe. The snow is not only gone in many parts of Europe, also Greenland’s ice cover is melting. The Greenland ice sheet contributes 25% to global sea-level rise. This makes it the largest contribution of the cryosphere. The increased mass loss of Greenland ice during the 21st century is mainly due to the increased surface water runoff, of which ~93% come directly from the small ablation zone of the ice sheet (~22% of the ice surface). As the snow melts in the summer, bare glacier ice is more exposed in this ablation zone. Naked ice is darker and less porous than snow. It absorbs more than twice the solar radiation while also holding back less meltwater. Smooth ice produces a large proportion (~78%) of the total outflow of Greenland into the sea, although in summer only a small area of ​​the ice is exposed. Accurately capturing the reduced albedo and the full extent of bare ice in climate models is critical to determining Greenland’s present and future runoff contribution to sea-level rise.

The mass loss of the Greenland ice sheet has recently increased due to the accelerated melting of its surface. As this melting is critically affected by surface albedo, understanding the processes and potential feedbacks regardinng the albedo is required for accurately forecasting mass loss. The resulting radiation variability of the ablation zone caused the ice layer to melt five times faster compared with hydrological and biological processes, which also darken the ice sheet. Variations in the snow limits due to the shallower ice layer at higher altitudes have an even greater impact on melt when the climate is warmer. As a result of these fluctuations, the mapped ice surface during the summer of 2012, the record year of snowmelt, was the largest and had an area of 300,050 km2. That is, bare ice accounted for 16% of the ice surface. The smallest extent of bare ice was 184,660 km2 and was observed in 2006. This corresponded to 10% of the ice surface, i.e. almost 40% less area than in 2012. However, the observed snowpack variation was high and the observation period was too short for a solid trend assessment.

Current climate models are too inaccurate in predicting the sea level rise during flood years, leading to uncertainty in the estimation of Greenland’s contribution to global sea level rise. To understand the factors that influence melting, Jonathan Ryan of Brown University, Providence, Rhode Island, and his colleagues have investigated Greenland’s snow line. At altitudes below the snow line, the darker ice is not covered by snow. This snow line moves up or down during Greenland’s seasons. The researchers mapped these movements between 2001 and 2017 using satellite images. The average height of the snow line at the end of the summer in 2009 was between 1,330 m and then 1,650 m in 2012. The fluctuations in the snow line are the most important factor when it comes to how much solar energy the ice sheet absorbs. Modelers must consider this effect to improve their predictions. Knowing how much and how fast the Greenland ice melts will help us to take better protective measures. At Frontis Energy, we think that the best protection against sea-level rise is the prevention and recycling of CO2.

(Photo: Wikipedia)

Posted on

Producing liquid bio-electrically engineered fuels from CO2

At Frontis Energy we have spent much thought on how to recycle CO2. While high value products such as polymers for medical applications are more profitable, customer demand for such products is too low to recycle CO2 in volumes required to decarbonize our atmosphere to pre-industrial levels. Biofuel, for example from field crops or algae has long been thought to be the solution. Unfortunately, they require too much arable land. On top of their land use, biochemical pathways are too complex to understand by the human brain. Therefore, we propose a different way to quickly reach the target of decarbonizing our planet. The proce­dure begins with a desired target fuel and suggests a mi­crobial consortium to produce this fuel. In a second step, the consortium will be examined in a bio-electrical system (BES).

CO2 can be used for liquid fuel production via multiple pathways. The end product, long-chain alcohols, can be used either directly as fuel or reduced to hydrocarbons. Shown are examples of high level BEEF pathways using CO2 and electricity as input and methane, acetate, or butanol as output. Subsequent processes are 1, aerobic methane oxida­tion, 2, direct use of methane, 3 heterotrophic phototrophs, 4, acetone-butanol fermentation, 5, heterotrophs, 6, butanol di­rect use, 7, further processing by yeasts

Today’s atmospheric CO2 imbalance is a consequence of fossil carbon combus­tion. This real­ity requires quick and pragmatic solutions if further CO2 accu­mulation is to be prevented. Direct air capture of CO2 is moving closer to economic feasibility, avoid­ing the use of arable land to grow fuel crops. Producing combustible fuel from CO2 is the most promis­ing inter­mediate solution because such fuel integrates seamlessly into existing ur­ban in­frastructure. Biofuels have been ex­plored inten­sively in re­cent years, in particular within the emerging field of syn­thetic biol­ogy. How­ever tempt­ing the application of genetically modified or­ganisms (GMOs) ap­pears, non-GMO technology is easier and faster to im­plement as the re­quired microbial strains al­ready exist. Avoiding GMOs, CO2 can be used in BES to produce C1 fu­els like methane and precursors like formic acid or syngas, as well as C1+ com­pounds like ac­etate, 2-oxybut­yrate, bu­tyrate, ethanol, and butanol. At the same time, BES inte­grate well into urban in­frastructure without the need for arable land. However, except for meth­ane, none of these fuels are readily com­bustible in their pure form. While elec­tromethane is a com­mercially avail­able al­ternative to fossil natu­ral gas, its volumetric energy den­sity of 40-80 MJ/m3 is lower than that of gasoline with 35-45 GJ/m3. This, the necessary technical modifications, and the psychological barrier of tanking a gaseous fuel make methane hard to sell to automobilists. To pro­duce liq­uid fuel, carbon chains need to be elongated with al­cohols or better, hy­drocarbons as fi­nal prod­ucts. To this end, syngas (CO + H2) is theoreti­cally a viable option in the Fischer-Tropsch process. In reality, syngas pre­cursors are ei­ther fossil fu­els (e.g. coal, natural gas, methanol) or biomass. While the for­mer is ob­viously not CO2-neu­tral, the latter com­petes for arable land. The di­rect con­version of CO2 and electrolytic H2 to C1+ fuels, in turn, is catalyzed out by elec­troactive microbes in the dark (see title figure), avoid­ing food crop com­petition for sun-lit land. Unfortunately, little re­search has been under­taken beyond proof of con­cept of few electroactive strains. In stark con­trast, a plethora of metabolic studies in non-BES is avail­able. These studies often pro­pose the use of GMOs or complex or­ganic sub­strates as precur­sors. We propose to systemati­cally identify metabolic strategies for liquid bio-electrically engineered fuel (BEEF) production. The fastest approach should start by screening meta­bolic data­bases using es­tablished methods of metabolic modeling, fol­lowed by high throughput hypothesis testing in BES. Since H2 is the intermediate in bio-electrosynthesis, the most efficient strategy is to focus on CO2 and H2 as di­rect pre­cursors with as few in­termediate steps as pos­sible. Scala­bility and energy effi­ciency, eco­nomic feasibil­ity that is, are pivotal elements.

First, an electrotrophic acetogen produces acetate, which then used by heterotrophic algae in a consecutive step.

The biggest obstacle for BEEF production is lacking knowledge about pathways that use CO2 and electrolytic H2. This gap exists despite metabolic data­bases like KEGG and more recently KBase, making metabolic design and adequate BEEF strain selection a guessing game rather than an educated ap­proach. Nonetheless, metabolic tools were used to model fuel pro­duction in single cell yeasts and various prokaryotes. In spite of their shortcomings, metabolic data­bases were also employed to model species interactions, for example in a photo-het­erotroph consor­tium using software like ModelSEED / KBase (http://mod­elseed.org/), RAVEN / KEGG and COBRA. A first sys­tematic at­tempt for BEEF cul­tures produci­ng acetate demonstrated the usability of KBase for BES. This research was a bottom-up study which mapped ex­isting genomes onto existing BEEF consor­tia. The same tool can also be em­ployed in a top-down ap­proach, starting with the desired fuel to find the re­quired or­ganisms. Some possi­ble BEEF organisms are the following.

Possible pathways for BEEF production involving Clostridium, 3, or heterotrophic phototrophs, 7, further processing by yeasts

Yeasts are among the microorganisms with the greatest potential for liquid biofuel production. Baker’s yeast, (Saccha­romyces cerevisiae) is the most promi­nent exam­ple. While known for ethanol fermentat­ion, yeasts also produce fusel oils such as bu­tane, phenyl, and amyl derivate aldehy­des and alco­hols. Unlike ethanol, which is formed via sugar fer­mentation, fusel oil is syn­thesized in branched-off amino acid pathways followed by alde­hyde reduction. Many en­zymes involved in the re­duction of aldehydes have been identified, with al­cohol dehydro­genases be­ing the most commonly ob­served. The corre­sponding reduc­tion reactions require reduced NADH⁠ but it is not known whether H2 pro­duced on cathodes of BES can be in­volved.
Clostridia, for example Clostridium acetobutylicum and C. carboxidivo­rans, can pro­duce alcohols like butanol, isopropanol, hexanol, and ketones like acetone from complex sub­strates (starch, whey, cel­lulose, etc. ) or from syngas. Clostridial me­tabolism has been clarified some time ago and is dif­ferent from yeast. It does not necessar­ily require com­plex precursors for NAD+ reduction and it was shown that H2, CO, and cath­odes can donate elec­trons for alcohol production. CO2 and H2 were used in a GMO clostridium to produce high titers of isobu­tanol. Typi­cal representa­tives for acetate produc­tion from CO2 and H2 are C. ljungdahlii, C. aceticum, and Butyribac­terium methy­lotrophicum. Sporo­musa sphaeroides pro­duces acetate in BES. Clostridia also dominated mixed cul­ture BESs converting CO2 to butyrate. They are therefore prime targets for low cost biofuel production. Alcohols in clostridia are produced from acetyl-CoA. This reaction is re­versible, al­lowing ac­etate to serve as substrate for biofuel production with extra­cellular en­ergy sup­ply. Then, en­ergy con­servation, ATP syn­thesis that is, can be achieved from ethanol electron bifurca­tion or H2 oxida­tion via respi­ration. While pos­sible in anaero­bic clostridia, it is hitherto unknown whether elec­tron bifurca­tion or res­piration are linked to alcohols or ke­tone synthesis.
Phototrophs like Botryococcus produce C1+ biofuels as well. They synthesize a number of different hydro­carbons including high value alkanes and alkenes as well as terpenes. However, high titers were achieved by only means of ge­netic engineering, which is economically not feasible in many countries due to regulatory constrains. Moreover, aldehyde dehy­dration/deformylation to alkanes or alkenes requires molecular oxygen to be present. Also the olefin path­way of Syne­chococcus depends on molecular oxygen with the cytochrome P450 involved in fatty acid de­carboxylation. The presence of molecular oxygen affects BES performance due to immediate product degrada­tion and unwanted cathodic oxygen reduction. In contrast, our own preliminary experi­ments (see title photo) and a corrosion experi­ment show that algae can live in the dark using electrons from a cath­ode. While the en­zymes in­volved in the production of some algal biofuels are known (such as olefin and alde­hyde de­formylation), it is not known whether these pathways are connected to H2 utilization (perhaps via ferredox­ins). Such a con­nection would be a promising indicator for the possibility of growing hydrocar­bon produc­ing cyanobacteria on cathodes of BES and should be examined in future research.
At Frontis Energy we believe that a number of other microorganisms show potential for BEEF production and these deserve further investi­gation. To avoid GMOs, BES compatible co-cultures must be identified via in silico meta­bolic reconstruc­tion from existing databases. Possible inter-species intermediates are unknown but are prerequisite for suc­cessful BES operation. Finally, a techno-economical assessment of BEEF pro­duction, with and with­out car­bon taxes, and compared with chemical methods, will direct future research.

Posted on

Ammonia energy storage #2

Recently, we reported on plans by Australian entrepreneurs and their government to use ammonia (NH3) to store excess wind energy. We proposed converting ammonia and CO2 from wastewater into methane gas (CH4), because it is more stable and easier to transport. The procedure follows the chemical equation:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Now we have published a scientific article in the online magazine Frontiers in Energy Research where we show that the process is thermodynamically possible and does indeed occur. Methanogenic microbes in anaerobic digester sludge remove the hydrogen (H2) formed by electrolysis from the reaction equilibrium. As a result, the redox potentials of the oxidative (N2/NH3) and the reductive (CO2/CH4) half-reactions come so close that the process becomes spontaneous. It requires a catalyst in the form of wastewater microbes.

Pourbaix diagram of ammonium oxidation, hydrogen formation and CO2 reduction. At pH 7 and higher, the oxidation of ammonium coupled to methanogenesis becomes thermodynamically possible.

To prove our idea, we first searched for the right microbes that could carry out ammonia oxidation. For our experiments in microbial electrolysis cells we used microorganisms from sediments of the Atlantic Ocean off Namibia as starter cultures. Marine sediments are particularly suitable because they are relatively rich in ammonia, free from oxygen (O2) and contain less organic carbon than other ammonia-rich environments. Excluding oxygen is important because it used by ammonia-oxidizing microbes in a process called nitrification:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Nitrification would have caused an electrochemical short circuit, as the electrons are transferred from the ammonia directly to the oxygen. This would have bypassed the anode (the positive electron accepting electrode) and stored the energy of the ammonia in the water − where it is useless. This is because, anodic water oxidation consumes much more energy than the oxidation of ammonia. In addition, precious metals are often necessary for water oxidation. Without producing oxygen at the anode, we were able to show that the oxidation of ammonium (the dissolved form of ammonia) is coupled to the production of hydrogen.

Oxidation of ammonium to nitrogen gas is coupled to hydrogen production in microbial electrolysis reactors. The applied potentials are +550 mV to +150 mV

It was important that the electrochemical potential at the anode was more negative than the +820 mV required for water oxidation. For this purpose, we used a potentiostat that kept the electrochemical potential constant between +550 mV and +150 mV. At all these potentials, N2 was produced at the anode and H2 at the cathode. Since the only source of electrons in the anode compartment was ammonium, the electrons for hydrogen production could come only from the ammonium oxidation. In addition, ammonium was also the only nitrogen source for the production of N2. As a result, the processes would be coupled.

In the next step, we wanted to show that this process also has a useful application. Nitrogen compounds are often found in wastewater. These compounds consist predominantly of ammonium. Among them are also drugs and their degradation products. At the same time, 1-2% of the energy produced worldwide is consumed in the Haber-Bosch process. In the Haber-Bosch process N2 is extracted from the air to produce nitrogen fertilizer. Another 3% of our energy is then used to remove the same nitrogen from our wastewater. This senseless waste of energy emits 5% of our greenhouse gases. In contrast, wastewater treatment plants could be net energy generators. In fact, a small part of the energy of wastewater has been recovered as biogas for more than a century. During biogas production, organic material from anaerobic digester sludge is decomposed by microbial communities and converted into methane:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

The reaction produces CO2 and methane at a ratio of 1:1. Unfortunately, the CO2 in the biogas makes it almost worthless. As a result, biogas is often flared off, especially in places where natural gas is cheap. The removal of CO2 would greatly enhance the product and can be achieved using CO2 scrubbers. Even more reduced carbon sources can shift the ratio of CO2 to CH4. Nevertheless, CO2 would remain in biogas. Adding hydrogen to anaerobic digesters solves this problem technically. The process is called biogas upgrading. Hydrogen could be produced by electrolysis:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Electrolysis of water, however, is expensive and requires higher energy input. The reason is that the electrolysis of water takes place at a relatively high voltage of 1.23 V. One way to get around this is to replace the water by ammonium:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

With ammonium, the reaction takes place at only 136 mV, which saves the respective amount of energy. Thus, and with suitable catalysts, ammonium could serve as a reducing agent for hydrogen production. Microorganisms in the wastewater could be such catalysts. Moreover, without oxygen, methanogens become active in the wastewater and consume the produced hydrogen:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

The methanogenic reaction keeps the hydrogen concentration so low (usually below 10 Pa) that the ammonium oxidation proceeds spontaneously, i.e. with energy gain:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

This is exactly the reaction described above. Bioelectrical methanogens grow at cathodes and belong to the genus Methanobacterium. Members of this genus thrive at low H2 concentrations.

The low energy gain is due to the small potential difference of ΔEh = +33 mV of CO2 reduction compared to the ammonium oxidation (see Pourbaix diagram above). The energy captured is barely sufficient for ADP phosphorylationG°’ = +31 kJ/mol). In addition, the nitrogen bond energy is innately high, which requires strong oxidants such as O2 (nitrification) or nitrite (anammox) to break them.

Instead of strong oxidizing agents, an anode may provide the activation energy for the ammonium oxidation, for example when poised at +500 mV. However, such positive redox potentials do not occur naturally in anaerobic environments. Therefore, we tested whether the ammonium oxidation can be coupled to the hydrogenotrophic methanogenesis by offering a positive electrode potential without O2. Indeed, we demonstrated this in our article and have filed a patent application. With our method one could, for example, profitably remove ammonia from industrial wastewater. It is also suitable for energy storage when e.g. Ammonia synthesized using excess wind energy.

Posted on

White Christmas, going … gone

In Germany, we seem to remember White Christmas from fairy tales only. Now there is also scientific evidence that winter snow cover in Europe is thinning. Thanks to global warming, the snow cover decrease accelerated

The research group behind Dr. Fontrodona Bach of the Royal Netherlands Meteorological Institute in De Bilt analyzed snow cover and climate data from six decades from thousands of weather stations across Europe. The researchers found that the mean snow depth, with the exception of some local extremely cold spots, has been decreasing since 1951 at 12% per decade. The researchers recently published their research results in the journal Geophysical Research Letters. The amount of “extreme” snow cover affecting local infrastructure has declined more slowly.

The observed decline, which accelerated after the 80s, is the result of a combination of rising temperatures and the impact of climate change on precipitation. The decreasing snow cover can reduce the availability of fresh water during the spring melt, the authors noted.

(Photo: Doris Wulf)

Posted on

An inexpensive scalable multi-channel potentiostat

As our preferred reader, you know already what we work on Power-to-Gas to combat Global Warming. We think that giving CO2 a value will incentivize its recycling and recycling it into fuel turns it into a commodity that everyone needs. While the price of CO2 from air is still too high to convert it into combustion fuel, working on the other end (the CO2 conversion) will help to accommodate such high prices. We have now published an research paper that shows how how to reduce the costs of electronic equipment needed for CO2 conversion. For Power-to-Gas as well es for electrosynthesis of liquid fuels, it is necessary to poise an electrochemical potential. So far, only electronic potentiostats could do that. We have developed a software solution that can control cheap off-the-shelf hardware to accomplish the same goal. Since the software controls µA as well as MA, it is freely scalable. By stacking cheap power supplies, it can also run unlimited channels.

Frontcell© potentiostat setup with two channels. From left to right: digital multimeter (in the back), relay board (in front), two H-type electrolysis cells, power supply, control computer.

We tested the software at a typical experimental Power-to-Gas setup at −800 mV and found that the recorded potential was stable over 10 days. The small electrochemical cells could also be replaced by a larger 7 liter reactor treating real wastewater. The potential was stable as well.

The potential of −800 mV controlled by the Frontcell© potentiostat was stable for 200 ml electrolysis cells (left) as well as for a larger 7 l reactor (right).

As instrument control of mass products also makes the chemical processes involved cheap, microbial electrolysis of wastewater becomes economically feasible. Removal of wastewater organics usually occurs at positive electrochemical potentials. Indeed, the software also stabilizes such potentials at +300 mV.

The Frontcell© potentiostat stabilized a 200 ml electrolysis cells at +300 mV for ten days.

The potentiostat is currently available as command line version. We are currently accepting pre-orders at a 50% discount for the commercial version that comes with a graphical user interface and remote control using an internet browser.

Posted on

Ammonia energy storage #1

The ancient, arid landscapes of Australia are not only fertile soil for huge forests and arable land. The sun shines more than in any other country. Strong winds hit the south and west coast. All in all, Australia has a renewable energy capacity of 25 terawatts, one of the highest in the world and about four times higher than the world’s installed power generation capacity. The low population density allows only little energy storage and electricity export is difficult due to the isolated location.

So far, we thought the cheapest way to store large amounts of energy was power-to-gas. But there is another way to produce carbon-free fuel: ammonia. Nitrogen gas and water are enough to make the gas. The conversion of renewable electricity into the high-energy gas, which can also be easily cooled and converted into a liquid fuel, produces a formidable carrier for hydrogen. Either ammonia or hydrogen can be used in fuel cells.

The volumetric energy density of ammonia is almost twice as high than that of liquid hydrogen. At the same time ammonia can be transported and stored easier and faster. Researchers around the world are pursuing the same vision of an “ammonia economy.” In Australia, which has long been exporting coal and natural gas, this is particularly important. This year, Australia’s Renewable Energy Agency is providing 20 million Australian dollars in funding.

Last year, an international consortium announced plans to build a $10 billion combined wind and solar plant. Although most of the 9 terawatts in the project would go through a submarine cable, part of this energy could be used to produce ammonia for long-haul transport. The process could replace the Haber-Bosch process.

Such an ammonia factories are cities of pipes and tanks and are usually situated where natural gas is available. In the Western Australian Pilbara Desert, where ferruginous rocks and the ocean meet, there is such an ammonia city. It is one of the largest and most modern ammonia plants in the world. But at the core, it’s still the same steel reactors that work after the 100 years-old ammonia recipe.

By 1909, nitrogen-fixing bacteria produced most of the ammonia on Earth. In the same year, the German scientist Fritz Haber discovered a reaction that could split the strong chemical bond of the nitrogen, (N2) with the aid of iron catalysts (magnetite) and subsequently bond the atoms with hydrogen to form ammonia. In the large, narrow steel reactors, the reaction produces 250 times the atmospheric pressure. The process was first industrialized by the German chemist Carl Bosch at BASF. It has become more efficient over time. About 60% of the introduced energy is stored in the ammonia bonds. Today, a single plant produces and delivers up to 1 million tons of ammonia per year.

Most of it is used as fertilizer. Plants use nitrogen, which is used to build up proteins and DNA, and ammonia delivers it in a bioavailable form. It is estimated that at least half of the nitrogen in the human body is synthetic ammonia.

Haber-Bosch led to a green revolution, but the process is anything but green. It requires hydrogen gas (H2), which is obtained from pressurized, heated steam from natural gas or coal. Carbon dioxide (CO2) remains behind and accounts for about half of the emissions. The second source material, N2, is recovered from the air. But the pressure needed to fuse hydrogen and nitrogen in the reactors is energy intensive, which in turn means more CO2. The emissions add up: global ammonia production consumes about 2% of energy and produces 1% of our CO2 emissions.

Our microbial electrolysis reactors convert the ammonia directly into methane gas − without the detour via hydrogen. The patent pending process is particularly suitable for removing ammonia from wastewater. Microbes living in wastewater directly oxidize the ammonia dissolved in ammonia and feed the released electrons into an electric circuit. The electricity can be collected directly, but it is more economical to produce methane gas from CO2. Using our technology, part of the CO2 is returned to the carbon cycle and contaminated wastewater is purified:

NH3 + CO2 → N2 + CH4

 

Posted on

Fuel Cells Have the Potential to Become the Best Green Energy Alternative to Fossil Fuels

Global warming is – as the name already suggests – a global concern. It causes problems such as sea level rise, more frequent and more severe strms, and longer droughts. Thus, it global warming concerns all of us. To best fight global warming, adopting green energy in your life is the best viable solution.

Green energy is getting more attention today. It helps to reduce our carbon footprint and thus curbing the global warming. Increasing carbon footprint is the main cause for rising temperatures. Moreover, investing in green energy is also a business case generating steady revenue stream without marginal costs. Hence, many governments promote the use of green energy by providing subsidies and teaching people its benefits in their life.

There are many ways green energy is produced, for example, solar energy, wind energy, the energy produced through bio-waste. Fuel cells are a major breakthrough in this regard. They have impacted the production green energy in many ways. They are also convenient to use. As their fuel (hydrogen, methane …) is produced by using electrical energy, they can use a wide range of green sources to produce energy.

What Are Fuel Cells?

A fuel cells is a device that converts chemical energy into electrical energy. The process combines hydrogen and oxygen to produce water& electricity as main products. Fuel cells are somewhat similar batteries. The main difference is that a fuel is supplied without a charge-discharge cycle. Like batteries, fuel cells are portable and can be used with a variety of fuels like ethanol, methanol, methane, and more.

There are different types of fuel cells. But the most popular ones are hydrogen fuel cells that provide a wide range with only some of advantages as follows:

  • The cells are more efficient than conventional methods used to produce energy.
  • They are quiet – unlike, for example combustion engines or turbines
  • Fuel cells eliminate pollution by using hydrogen instead of burning of fossil fuels.
  • Fuel cells have a longer lifespan than batteries because fresh fuel is supplied constantly
  • They use chemical fuels that can be recycled or produced using renewable energy which makes them environmentally friendly.
  • Hydrogen fuel cells are grid-independent and can be used anywhere.

How Do Fuel Cells Work?

A fuel cell produces power by transforming chemical energy into electrical energy in reduction-oxidation processes, much like batteries do. However, unlike batteries, they produce electricity from external supplies of fuel to the anode and oxidants to the cathode. Fuel cells are capable of producing energy as long as the fuel required to produce energy is supplied. Main components of fuel cells are electrolytes that allow for ion exchange. They aid the electro chemical reaction.

Hydrogen, ethanol, methanol, and methane are used as a source of energy. Methane, which is extracted from the subsurface, can be transformed into hydrogen rich stream. With an abundance of the hydrogen in nature, fuel cells seem to be the most viable technology that helps to produce green energy at large scale and at the most affordable cost.

Fuel cells are all set to become the most reliable source of green energy in the near future. They are fuel efficient, so businesses can make the best use of them. At Frontis Energy, we offer a unique selection that helps you build and improve your own fuel cells – be it for research and development or for production.

Posted on

What is the need of renewable energy sources?

Currently, we are using coal, oil, and gas as our energy resource. They are known as fossil fuels and when burned, they release heat energy that can be turned into electricity. Unfortunately, they cannot be replenished. This form of energy can also be harmful for the health and also a degrading factor for the entire health of the world. People today are turning towards the use of renewable energy for it is an energy source that is less harmful for the environment and for our health.

There are different renewable sources of energy in use today like solar, wind, and hydroelectric power. Wind turbines and solar panels are becoming an increasingly common sight to be used as energy resource. Some of the other forms of clean energies are geothermal, and energy from biomass. These are effective solutions for avoiding, minimizing, and mitigating the use of fossil fuels.

Here are the best benefits of a renewable energy source –

It ensures less global warming

Different human activities are overloading the atmosphere with various harmful gases and other emissions. These gases act like a blanket that result in a web of significant harmful impacts. Increasing the supply of renewable energy would allows the replacement of carbon intensive energy sources with to reduce green house gas emissions.

It improves the public health

Air pollution from using coal and oil is linked with breathing problems, heart attacks, cancer and neurological damage. Most of the negative impacts come from the air and water pollution. Wind, solar, and hydroelectric systems will generate electricity with no associated air pollution emissions.

It is better to use the inexhaustible energy

Strong winds, sunny skies, heat from underground water, and abundant plant matter will provide constant supply of energy. Renewable energy provides a significant share of electric needs, even after accounting for potential constraints.

There are many of economic benefits

Renewable energy is supporting thousands of jobs. Solar panels need workers to install them; wind farms need technicians for maintenance.

There are a lot of reasons for moving towards the use of renewable energy for now and in the future. But there are some limitations also with the use of such energy resources. It is thus advisable to contact the support experts of professionals dealing with the use of green house gases for energy production.

Posted on

What is Green Energy? How will renewable energy power the future?

Together with water, energy is the most valuable resource we have. It powers different industries.  Energy provides a system with the ability to perform work and without it, industries cannot function. Using green energy for manufacturing in growing economies is not only more sustainable but can also save money. Green energy is the energy that can be harnessed without harming the environment. This source of energy is environmentally friendly releasing very little toxic compounds into our atmosphere.

Green energy is defined as renewable energy since it is not exhausted at the source. It is also referred to as a clean energy due to the lack of negative impacts on the environment. To keep the planet clean it is important to use such alternative energy sources. One prominent example is the energy obtained from the processing of waste materials to make the environment cleaner. These materials normally pollute the environment by increasing the amount of waste material and toxic substances on the Earth’s surface.

Why use renewable energy?

It is critical to use renewable energy for reducing the global carbon emissions. Investments into such green energy have increased gradually as the cost of technologies fall and efficiency continues to rise. These are the reasons why renewable are rapidly making their way up the agenda –

Growing Price Competitiveness

Non-renewable sources of energies like fossil gas, oil, or coal, threaten power plant operators & end users, because of the insecurity of marginal costs. The price of gas fluctuates across regions, in a cyclical, though unpredictable fashion.

Renewable energy prices, on the contrary, have been continually decreasing. There have been significant price drops in solar over the last decade and the prices for onshore wind also drop significantly.

Long-term Certainty

Renewable have been heavily encouraged by policy makers and direct as well as indirect subsidies. This has driven down the costs during early deployment. The wind or solar farms are usually constructed for up to 25 to 30 years of operation, and even longer for hydro power plants. Thus, renewable continues to generate electricity for a very long time while their efficiency continues to increase.

Energy Security

The majority of non-renewable sources are concentrated in certain regions, whereas renewable energy can be domestic. This helps nations to reduce their dependencies on imported sources. The energy independence thus plays a significant role in addressing our energy needs by replacing foreign energy imports with clean electricity.

It is important to manage diminishing fossil fuel reserves and climate change is the biggest challenge the world is facing today. People are moving from non-renewable energy use to green energy to save the world for the future but also to save money. Clean energy development is vital to combat global warming and to limit its most devastating effects.