Forests are vital to our society. In the EU, forests make up around 38% of the total land area. They are important carbon sinks as they eliminate around 10% of EU greenhouse gases. Efforts to conserve them are a key part of EU climate targets. However, the increasing demand for forest products poses challenges for sustainable forest management.
According to a report recently published in the renowned science magazine Nature, the EU’s deforested area has increased by 49% and with it the loss of biomass (69%). This is due to large-scale deforestation, which reduces the continent’s carbon absorption capacity and accelerates climate change.
The analyzed a series of very detailed satellite data. The authors of the report show that deforestation occurred primarily on the Iberian Peninsula, the Baltic States, and Scandinavia. Deforestation of forest areas increased by 49% between 2016 and 2018. Satellite images also show that the average area of harvested land across Europe has increased by 34 percent, with potential implications for biodiversity, soil erosion and water regulation.
The accelerating deforestation could thwart the EU’s strategy to combat climate change, which aims in particular to protect forests in the coming years, the experts warn in their study. For this reason, the increasing use of forests is challenging to maintain the existing balance between the demand for wood and the need to preserve these key ecosystems for the environment. Typically, industries such as bioenergy or the paper industry are the driving forces behind deforestation.
The greatest acceleration in deforestation was recorded in Sweden and Finland. In these two countries, more than 50% of the increase in deforestation in Europe has been recorded. Next in line are Spain, Poland, France, Latvia, Portugal and Estonia, which together account for six to 30% of the increase, the study said.
Experts suggest linking deforestation and carbon emissions in model calculations before setting new climate targets. The increase in forest harvest is the result of the recent expansion of global wood markets, as evidenced by economic indicators for forestry, timber bioenergy and international trade. If such a high forest harvest continues, the EU’s vision of forest-based mitigation after 2020 could be compromised. The additional carbon losses from forests would require additional emission reductions in other sectors to achieve climate neutrality.
At Frontis Energy, we find the competition between bioenergy and this important carbon sink particularly disturbing, as both are strategies to mitigate global warming.
In our previous post we briefed you on the energy storage potential in the United Kingdom. With Brexit, Italy will become the third largest member state after Germany and France. With extensive mountain terrain in the north, Italy has long been dependent upon hydroelectric generation. Until the mid 1960s hydropower represented nearly all electricity production in Italy. The installed capacity of hydropower has been stagnant since the mid 1960s, with a rapid growth in fossil fuel based generation driving the overall share of hydropower fall from ~90% to 22% in 2014. A detailed breakdown of electricity sources in Italy is shown below.
Considerable effort has been made to transition Italy to a low carbon electricity sector. As of 2016, Italy had the 5th highest installed solar capacity in the world and the 2nd highest per capita solar capacity, behind only Germany. In addition to its impressive solar progress Italy ranks 6th worldwide in geothermal with 0.9 GW.
Italy’s solar growth was propelled by feed-in-tariffs that wer enacted in 2005. This provided residential PV owners with financial compensation for energy sold to the grid. However, the feed-in-tariff program ceased on 06 July 2014 after the €6.7 billion subsidy limit was reached.
Even with its impressive accomplishments in renewable energy, traditional thermal generation (natural gas) still account for ~60% of total electricity generation in Italy. How much effort will go into reducing this number is still unclear. Italy has committed to 18% renewables by 2020 and is nearly 70% of the way there already so there is little urgency on reducing fossil-based electricity from the perspective of meeting this target. However, Italy is heavily reliant on fossil fuel imports (Deloitte) and energy security requirements will likely continue to push the development of more domestic electricity sources like renewables.
Energy Storage Facilities
Italy is dominating the electro-chemical energy storage market in Europe. With over 6,000 GWh of planned and installed electro-chemical generating capacity (~84 MW installed capacity), Italy is far ahead of 2nd place UK. This is largely due to the massive SNAC project by TERNA (Italy’s TSO), a sodium-ion battery installation totaling nearly 35 MW over three phases. A breakdown of energy storage projects, by technology type can be seen below.
Italy is one of the top markets in the EU for energy storage and is primed for growth. The Italian TSO, TERNA, has been investigating selling energy storage as a service. In 2014 the AEEG, the electrical regulator under which TERNA operates, proposed that batteries should be treated as generation sources similar to cogeneration plants. Italy has always been a market completely dominated by a small number of big centralized utility companies and this trend is likely to continue when it comes to EES deployment. These companies have been focusing their efforts on battery technologies and are expected to continue down this path.
However, the private market could present great opportunity for P2G. The International Battery & Energy Storage Alliance have summarized the reality of Italy’s untapped energy storage market as follows: “With high solar output of 1,400 kWh/kWp, net residential electricity prices around 23 cent/kWh and currently no FIT, the Italian energy market is considered to be highly receptive for energy storage.”
Italy is now well-stocked with residential PV systems that can no longer collect subsidies. Combine this with the fact that the vast majority of homes in Italy burn natural gas imported from Russia, Libya and Algeria and it is clear that Italy presents a unique opportunity for P2G at a residential/community level. This is echoed by Energy Storage Update who in 2015 concluded that Italy was “one of the top four markets worldwide for PV-and-battery-based energy self-consumption.”
While it is unclear exactly how many residential PV systems there are in Italy, it was speculated in late 2015 that there were over 500,000 PV plants in Italy.
In our last post about the EU energy storage market we gave a brief overview of Germany’s situation. Now, we show how the United Kingdom prepared itself for its energy transition. Traditionally, the UK’s energy mix has been dominated by fossil fuels. This remains the status quo today, as approximately 60% of the electricity generated in the UK comes from fossil fuel sources, with another 20% coming from nuclear.
While the UK has been heavily dependent on carbon-intensive sources of electricity, in 2008 they committed to a 15% renewable energy target (by 2020) and 80% reduction in CO2 emissions (by 2050; Department of Energy & Climate Change). However, the UK has stated that they will miss the 15% renewable target for 2020, due to the lack of properly designed policy measures. There has been considerable pressure to transition to a low carbon market and with one-quarter of existing generating capacity (mainly coal and nuclear) expected to close by 2021; it is expected that growth in renewable energy will lead to more energy storage capacities.
The UK has made excellent progress on its short-term clean energy goals and there is optimism that this trend will continue. Large-scale development of low carbon generation technologies such as wind and solar is expected to continue.
Energy Storage Facilities
As of late 2016, there were 27 non-PHS EES plants representing 430 MW of installed capacity in the UK (Sandia National Laboratories). The UK’s energy storage portfolio is dominated by electro-chemical based technologies (primarily lead-acid and lithium-ion battery installations). This is shown below.
As was shown for Germany, only a very small fraction of EES facilities are dedicated to renewables capacity firming. The existing EES capacity is almost exclusively dedicated to critical transmission support (on-site power). While nearly all of the EES capacity under development is dedicated to bulk energy storage (electric energy time shift).
There is still considerable uncertainty around the growth of EES in the UK, and with such a small sample size it is difficult to infer any correlation from the data in the figure above. According to the previous UK government, however, being geographically isolated and a net importer of electricity, one would expect the UK to place a heavier focus on renewables capacity firming in the long-term.
Energy Storage Market Outlook
The UK is in the midst of a major restructuring of their electricity generating portfolio and the market under which these assets operate. With a large portion of the existing capacity due for retirement in the next 10-15 years, the UK faces challenges in meeting energy needs while balancing decarbonization efforts. As part of this, major investment is needed in all areas of the electrical grid, including energy storage.
In its Smart Power publication, the National Infrastructure Commission outlined that while the UK is being faced with challenges to cover aging infrastructure this represents an opportunity to build efficient and flexible energy infrastructure. The Commission stated that energy storage was one of the three key innovations for a “smart power revolution”.
Many other official government bodies have expressed similar thoughts regarding energy storage. In its Low carbon network infrastructure report, the Energy and Climate Change Committee stated that “storage technologies should be deployed at scale as soon as possible”, while urging the Government to eliminate the outdated and unfair regulations that have been handcuffing energy storage development in the UK (Garton and Grimwood).
In April 2016, the Government acknowledged concerns regarding the regulatory hurdles facing energy storage projects (primarily double-charging of network charges) and stated that they would begin working with the National Infrastructure Commission and ECCC to investigate the issue. While there may be regulatory hurdles hindering energy storage in the UK, the Government has shown commitment through funding. Since 2012, the government has contributed over £80 million to energy storage research. In addition to this, the Department of Energy and Climate Change have developed a new £20 million fund to help drive innovation in energy storage technologies.
Overall, the outlook for energy storage in the UK is positive. There is considerable pressure to begin developing energy storage facilities at scale from not only industry, but also many government bodies. Investors are ready as well. As stated by the National Infrastructure Commission: “businesses are already queuing up to invest”.
Simply put: regulatory hurdles are holding back growth in the UK energy storage market. With the Government making major strides in renewable energy development and being vocal about its commitment to making the UK a leader in energy storage technology, these regulatory hurdles will likely be relaxed and there should be considerable growth in the UK energy storage market in the near-term.
At this point, specific technology types and service uses have not been hypothesized in detail. However, with the UK being geographically isolated and a net importer of electricity, logic would suggest an emphasis on renewables capacity firming in the long-term to maximize domestic consumption of renewable energy. Rapidly decreasing costs in electro-chemical technologies, coupled with the fact that much of the existing gas-fired capacity will be reaching end of life by 2030 suggest that the UK EES market would not be ideal for P2G technologies.
In our previous post of this blog series on Electrical Energy Storage in the EU we briefly introduced you to different technologies and their use cases. Here, we give you a short overview over the EU energy grid. Supplying approximately 2,500 TWh annually to 450 million customers across 24 countries, the synchronous interconnected system of Continental Europe (“the Grid”) is the largest interconnected power network in the world. The Grid is made up of transmission system operators (TSOs) from 24 countries stretching from Greece to the Iberic Peninsula in the south, Denmark and Poland in the north, and up to the black sea in the east. The European Network of Transmission System Operators (ENTSO-E) serves as the central agency tasked with promoting cooperation between the TSOs from the member countries in the Grid. The ENTSO-E, in essence, acts as the central TSO for Europe. With over 140 GW of installed wind and solar PV capacity, the EU trails behind only China in installed capacity. A breakdown of the individual contributions of EU member states is shown below in the figure above.
Energy Storage in the EU
For this study a number of European countries were selected for more detailed investigation into energy storage needs. These countries were selected based on a combination of existing market size, intentions for growth in non-dispatchable renewable energy and/or energy storage, and markets with a track record of innovation in the energy sector.
On a total capacity basis (installed and planned MW) the top three energy storage markets within the EU are: Italy, the UK, and Germany. These countries were selected on the basis of these existing market sizes.
Spain and Denmark were selected based on their large amounts of existing renewable energy capacity and − in the case of Denmark − the forecasted growth in renewable energy and energy storage capacity.
Each of the selected countries (Germany, UK, Italy, Spain, Denmark, Netherlands) are discussed in the proceeding sections, providing a more detailed overview outlining their current electricity portfolios and decarbonization efforts, current energy storage statistics, and a brief discussion on market outlook.
Electrical Energy Storage (EES) is the process of converting electrical energy from a power network into a form that can be stored for converting back to electricity when needed. EES enables electricity to be produced during times of either low demand, low generation cost, or during periods of peak renewable energy generation. This allows producers and transmission system operators (TSOs) the ability to leverage and balance the variance in supply/demand and generation costs by using stored electricity at times of high demand, high generation cost, and/or low generation capacity.
EES has many applications including renewables integration, ancillary services, and electrical grid support. This blog series aims to provide the reader with four aspects of EES:
An overview of the function and applications of EES technologies,
State-of-the-art breakdown of key EES markets in the European Union,
A discussion on the future of these EES markets, and
Applications (Service Uses) of EES.
Table: Some common service uses of EES technologies
Storage Category
Storage Technology
Pumped Hydro
Open Loop
Closed Loop
Electro-chemical
Batteries
Flow Batteries
Capacitors
Thermal Storage
Molten Salts
Heat
Ice
Chilled Water
Electro-mechanical
Compressed Air Energy Storage (CAES)
Flywheel
Gravitational Storage
Hydrogen Storage
Fuel Cells
H2 Storage
Power-to-Gas
Unlike any other commodities market, electricity-generating industries typically have little or no storage capabilities. Electricity must be used precisely when it is produced, with grid operators constantly balancing electrical supply and demand. With an ever-increasing market share of intermittent renewable energy sources the balancing act is becoming increasingly complex.
While EES is most often touted for its ability to help minimize supply fluctuations by storing electricity produced during periods of peak renewable energy generation, there are many other applications. EES is vital to the safe, reliable operation of the electricity grid by supporting key ancillary services and electrical grid reliability functions. This is often overlooked for the ability to help facilitate renewable energy integration. EES is applicable in all of the major areas of the electricity grid (generation, transmission & distribution, and end user services). A few of the most prevalent service uses are outlined in the Table above. Further explanation on service use/cases will be provide later in this blog, including comprehensive list of EES applications.
Electrical energy storage (EES) is not only a vital component in the reliable operation of modern electrical grids, but also a focal point of the global renewable energy transition. It has been often suggested that EES technologies could be the missing piece to eliminating the technical hurdles facing the implementation of intermittent renewable energy sources. In the following blog posts, selected EES markets within the European Union will be evaluated in detail.
With over 80 MW of installed wind and solar capacity, Germany is by far the leading EU nation in the renewable energy transition. However, experts have argued that Germany’s need for widespread industrial scale energy storage is unlikely to materialize in any significant quantity for up to 20-years. This is due to a number of factors. Germany’s geographic location and abundance of connections to neighbouring power grids makes exporting any electricity fluctuations relatively easy. Additionally, when Germany reaches its 2020 targets for wind and solar capacity (46 GW and 52 GW, respectively) the supply at a given time would generally not exceed 55 GW. Nearly all of this would be consumed domestically, with no/little need for storage.
When evaluating energy storage in the UK, a different story emerges. Being an isolated island nation there is considerably more focus on energy independence to go along with their low-carbon energy goals. However, the existing regulatory environment is cumbersome, and poses barriers significant enough to substantially inhibit the transition to a low-carbon energy sector – including EES. The UK government has acknowledged the existence of regulatory barriers and pledged to address them. As part of this effort, a restructuring of their power market to a capacity-based market is already underway. The outlook for EES in the UK is promising, there is considerable pressure from not only industry, but also the public and the government to continue developing EES facilities at industrial scale.
Italy, once heavily hydro-powered, has grown to rely on natural gas, coal, and oil for 50% of it’s electricity (gas representing 34% alone). The introduction of a solar FIT in 2005 lead to significant growth in the solar industry (Italy now ranks 2nd in per capita solar capacity globally) before the program ended in July 2014. In recent years there has been notable growth in electro-chemical EES capacity (~84 MW installed), primarily driven by a single large-scale project by TERNA, Italy’s transmission system operator (TSO). This capacity has made Italy the leader in EES capacity in the EU, however the market is to-date dominated by the large TSOs.
However, the combination of a reliance on imported natural gas, over 500,000 PV systems no longer collecting FIT premiums, and increasing electricity rates presents a unique market opportunity for residential power-to-gas in Italy.
Denmark is aggressively pursing a 100-percent renewable target for all sectors by 2050. While there is still no official roadmap policy on how they will get there, they have essentially narrowed it down to one of two scenario: a biomass-based scenario, or a wind + hydrogen based scenario. Under the hydrogen-based scenario there would be widespread investment to expand wind capacity and couple this capacity with hydrogen power-to-gas systems for bulk energy storage. With the Danish expertise and embodied investment in wind energy, one would expect that the future Danish energy system would be build around this strength, and hence require significant power-to-gas investment.
The renewable energy industry in Spain has completed stagnated due to retroactive policy changes and taxes on consumption of solar generated electricity introduced in 2015. The implementation of the Royal Decree 900/2015 on self-consumption has rendered PV systems unprofitable, and added additional fees and taxes for the use of EES devices. No evidence was found to suggest a market for energy storage will materialize in Spain in the near future.
The final country investigated was the Netherlands, which has been criticized by the EU for its lack of progress on renewable energy targets. With only 10% of Dutch electricity coming from renewable sources, there is currently little demand for large-scale EES. While the Netherlands may be lagging behind on renewable electricity targets, they have been a leader in EV penetration; a trend that will continue and see 1-million EVs on Dutch roads by 2025. In parallel with the EV growth, there has been a large surge in sub-100kW Li-ion installations for storing energy at electric vehicle (EV) charging stations. It is expected that these applications will continue to be the primary focus of EES in the Netherlands.
Similar to Italy, the Dutch rely heavily on natural gas for energy within their homes. This fact, coupled with an ever-increasing focus on energy independent and efficient houses could make the Netherlands a prime market for residential power-to-gas technologies.