Posted on Leave a comment

Energy storage in the European Union

Grid integration of renewables

In our previous post of this blog series on Electrical Energy Storage in the EU we briefly introduced you to different technologies and their use cases. Here, we give you a short overview over the EU energy grid.  Supplying approximately 2,500 TWh annually to 450 million customers across 24 countries, the synchronous interconnected system of Continental Europe (“the Grid”) is the largest interconnected power network in the world. The Grid is made up of transmission system operators (TSOs) from 24 countries stretching from Greece to the Iberic Peninsula in the south, Denmark and Poland in the north, and up to the black sea in the east. The European Network of Transmission System Operators (ENTSO-E) serves as the central agency tasked with promoting cooperation between the TSOs from the member countries in the Grid. The ENTSO-E, in essence, acts as the central TSO for Europe. With over 140 GW of installed wind and solar PV capacity, the EU trails behind only China in installed capacity. A breakdown of the individual contributions of EU member states is shown below in the figure above.

Energy Storage in the EU

For this study a number of European countries were selected for more detailed investigation into energy storage needs. These countries were selected based on a combination of existing market size, intentions for growth in non-dispatchable renewable energy and/or energy storage, and markets with a track record of innovation in the energy sector.

On a total capacity basis (installed and planned MW) the top three energy storage markets within the EU are: Italy, the UK, and Germany. These countries were selected on the basis of these existing market sizes.

Spain and Denmark were selected based on their large amounts of existing renewable energy capacity and − in the case of Denmark − the forecasted growth in renewable energy and energy storage capacity.

While still lagging behind the rest of the EU in terms of decarbonization efforts and having a small portion of their energy from renewable sources, the Netherlands were also selected for further investigation.

Each of the selected countries (Germany, UK, Italy, Spain, Denmark, Netherlands) are discussed in the proceeding sections, providing a more detailed overview outlining their current electricity portfolios and decarbonization efforts, current energy storage statistics, and a brief discussion on market outlook.

Pumped Hydro Storage

With over 183 GW of installed capacity worldwide, pumped hydro storage is the most widely implemented and most established form of energy storage in the world. Due its extensive market penetration, technology maturity, and the fact that this blog is aimed at emerging new storage technologies, the data presented in the following posts excludes this technology.

Posted on

EU market summary for energy storage

Electrical energy storage (EES) is not only a vital component in the reliable operation of modern electrical grids, but also a focal point of the global renewable energy transition. It has been often suggested that EES technologies could be the missing piece to eliminating the technical hurdles facing the implementation of intermittent renewable energy sources. In the following blog posts, selected EES markets within the European Union will be evaluated in detail.

With over 80 MW of installed wind and solar capacity, Germany is by far the leading EU nation in the renewable energy transition. However, experts have argued that Germany’s need for widespread industrial scale energy storage is unlikely to materialize in any significant quantity for up to 20-years. This is due to a number of factors. Germany’s geographic location and abundance of connections to neighbouring power grids makes exporting any electricity fluctuations relatively easy. Additionally, when Germany reaches its 2020 targets for wind and solar capacity (46 GW and 52 GW, respectively) the supply at a given time would generally not exceed 55 GW. Nearly all of this would be consumed domestically, with no/little need for storage.

When evaluating energy storage in the UK, a different story emerges. Being an isolated island nation there is considerably more focus on energy independence to go along with their low-carbon energy goals. However, the existing regulatory environment is cumbersome, and poses barriers significant enough to substantially inhibit the transition to a low-carbon energy sector – including EES. The UK government has acknowledged the existence of regulatory barriers and pledged to address them. As part of this effort, a restructuring of their power market to a capacity-based market is already underway. The outlook for EES in the UK is promising, there is considerable pressure from not only industry, but also the public and the government to continue developing EES facilities at industrial scale.

Italy, once heavily hydro-powered, has grown to rely on natural gas, coal, and oil for 50% of it’s electricity (gas representing 34% alone). The introduction of a solar FIT in 2005 lead to significant growth in the solar industry (Italy now ranks 2nd in per capita solar capacity globally) before the program ended in July 2014. In recent years there has been notable growth in electro-chemical EES capacity (~84 MW installed), primarily driven by a single large-scale project by TERNA, Italy’s transmission system operator (TSO). This capacity has made Italy the leader in EES capacity in the EU, however the market is to-date dominated by the large TSOs.

However, the combination of a reliance on imported natural gas, over 500,000 PV systems no longer collecting FIT premiums, and increasing electricity rates presents a unique market opportunity for residential power-to-gas in Italy.
Denmark is aggressively pursing a 100-percent renewable target for all sectors by 2050. While there is still no official roadmap policy on how they will get there, they have essentially narrowed it down to one of two scenario: a biomass-based scenario, or a wind + hydrogen based scenario. Under the hydrogen-based scenario there would be widespread investment to expand wind capacity and couple this capacity with hydrogen power-to-gas systems for bulk energy storage. With the Danish expertise and embodied investment in wind energy, one would expect that the future Danish energy system would be build around this strength, and hence require significant power-to-gas investment.

The renewable energy industry in Spain has completed stagnated due to retroactive policy changes and taxes on consumption of solar generated electricity introduced in 2015. The implementation of the Royal Decree 900/2015 on self-consumption has rendered PV systems unprofitable, and added additional fees and taxes for the use of EES devices. No evidence was found to suggest a market for energy storage will materialize in Spain in the near future.

The final country investigated was the Netherlands, which has been criticized by the EU for its lack of progress on renewable energy targets. With only 10% of Dutch electricity coming from renewable sources, there is currently little demand for large-scale EES. While the Netherlands may be lagging behind on renewable electricity targets, they have been a leader in EV penetration; a trend that will continue and see 1-million EVs on Dutch roads by 2025. In parallel with the EV growth, there has been a large surge in sub-100kW Li-ion installations for storing energy at electric vehicle (EV) charging stations. It is expected that these applications will continue to be the primary focus of EES in the Netherlands.

Similar to Italy, the Dutch rely heavily on natural gas for energy within their homes. This fact, coupled with an ever-increasing focus on energy independent and efficient houses could make the Netherlands a prime market for residential power-to-gas technologies.

Read more about electrical energy storage here.

Jon Martin, 2019

(Photo: NASA)

Posted on

Faster photoelectrical hydrogen

Achieving high current densities while maintaining high energy efficiency is one of the biggest challenges in improving photoelectrochemical devices. Higher current densities accelerate the production of hydrogen and other electrochemical fuels.

Now a compact, solar-powered, hydrogen-producing device has been developed that provides the fuel at record speed. In the journal Nature Energy, the researchers around Saurabh Tembhurne describe a concept that allows capturing concentrated solar radiation (up to 474 kW/m²) by thermal integration, mass transport optimization and better electronics between the photoabsorber and the electrocatalyst.

The research group of the Swiss Federal Institute of Technology in Lausanne (EPFL) calculated the maximum increase in theoretical efficiency. Then, they experimentally verified the calculated values ​​using a photoabsorber and an iridium-ruthenium oxide-platinum based electrocatalyst. The electrocatalyst reached a current density greater than 0.88 A/cm². The calculated conversion efficiency of solar energy into hydrogen was more than 15%. The system was stable under various conditions for more than two hours. Next, the researchers want to scale their system.

The produced hydrogen can be used in fuel cells for power generation, which is why the developed system is suitable for energy storage. The hydrogen-powered generation of electricity emits only pure water. However, the clean and fast production of hydrogen is still a challenge. In the photoelectric method, materials similar to those of solar modules were used. The electrolytes were based on water in the new system, although ammonia would also be conceivable. Sunlight reaching these materials triggers a reaction in which water is split into oxygen and hydrogen. So far, however, all photoelectric methods could not be used on an industrial scale.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

The newly developed system absorbed more than 400 times the amount of solar energy that normally shines on a given area. The researchers used high-power lamps to provide the necessary “solar energy”. Existing solar systems concentrate solar energy to a similar degree with the help of mirrors or lenses. The waste heat is used to accelerate the reaction.

The team predicts that the test equipment, with a footprint of approximately 5 cm, can produce an estimated 47 liters of hydrogen gas in six hours of sunshine. This is the highest rate per area for such solar powered electrochemical systems. At Frontis Energy we hope to be able to test and offer this system soon.

(Photo: Wikipedia)

Posted on

Better heat exchangers for concentrated solar power

Solar thermal systems are a good example of the particle-wave dualism expressed in Planck’s constant h: E = hf. Where h is the Planck constant, f is the frequency of the light and E is the resulting energy. Thus, the higher the frequency of the light, the higher the amount of energy. Solar thermal metal collectors transform the energy of high-frequency light by generating them to an abundance of low-frequencies through Compton shifts. Glass or ceramic coatings with high visible and UV transmittance absorb the low frequency light generated by the metal because they effectively absorb infrared light (so-called heat blockers). The efficiency of the solar thermal system improves significantly with increasing size, which is also the biggest advantage of such systems compared to photovoltaic generators. One disadvantage, however, is the downstream transformation of heat into electricity with the help of heat exchangers and turbines − a problem not only in solar thermal systems.

To provide the hot gas (supercritical CO2) to the turbines, heat exchangers are necessary. These heat exchangers transfer the heat energy generated by a power plant to the working fluid in a heat engine (usually a steam turbine) that converts the heat into mechanical energy. Then, the mechanical energy is used to generate electricity. These heat exchangers are operated at ~800 Kelvin and could be more efficient if the temperature were at >1,000 Kelvin. The entire process of converting heat into electricity is called a power cycle and is a critical process in power generation by solar thermal plants. Obviously, heat exchangers are pivotal elements in this process.

Ceramics are a great material material for heat exchanger because they can withstand extreme temperature fluctuations. However, unlike metals, ceramics are not easy to shape. Relatively coarse shapes, in turn, are made quickly and easily. In contrast, metals can be easily formed and have a high mechanical strength. Metals and ceramics have been valued for centuries for their distinctive properties. For example, bronze and iron have good impact resistance and are so malleable that they have been made into complex shapes such as weapons and locks. Ceramics, like those used to make pottery, have been formed into simpler shapes. Their resistance to heat and corrosion made ceramics a valued material. A new composite of metal and ceramic (a so-called cermet) combines these properties in amazing ways. A research group led by Mario Caccia reported now in the prestigious journal Nature about a cermet with properties that makes it usable for heat exchangers in solar thermal systems.

The history of such composites goes back to the middle of the 20th century. The advent of jet engines has created a need for materials with high resistance to heat and oxidation. On top of that, they had to deal with rapid temperature changes. Their excellent mechanical strength, which often surpassed that of existing metals, was highly appreciated by the newly created aerospace industry. Not surprisingly, the US Air Force funded more research into the production of cermets. Cermets have since been developed for multiple applications, but in most cases have been used for small parts or surfaces. The newly released composite withstands extreme temperatures, high pressures and rapid temperature changes. It could increase the efficiency of heat exchangers in solar thermal systems by 20%.

To produce the composite, the authors first produced a precursor, which was subject to further processing, comparable to potting the unfired version of a clay pot. The authors compacted tungsten carbide powder into the approximate shape of the desired article (the heat exchanger) and heated it at 1,400 °C for 2 minutes to bond the parts together. They then further processed this porous preform to produce the desired final shape.

Next, the authors heated the preform in a chemically reducing atmosphere (a mixture of 4% hydrogen in argon) at 1,100 °C. At the same temperature, they immersed the preform in a tank of liquid zirconium and copper (Zr2Cu). Finally, the preform was removed by heating to 1,350 °C. In this process, the zirconium displaces the tungsten from the tungsten carbide, producing zirconium carbide (ZrC) as well as tungsten and copper. The liquid copper is displaced from the ZrC matrix as the material solidifies. The final object consists of ~58% ZrC ceramic and ~36% tungsten metal with small amounts of tungsten carbide and copper. The beauty of the method is that the porous preform is converted into a non-porous ZrC / tungsten composite of the same dimensions. The total volume change is about 1-2%.

The elegant manufacturing process is complemented by the robustness of the final product. At 800 °C, the ZrC / tungsten cermet conducts heat 2 to 3 times better than nickel based iron alloys. Such alloys are currently used in high-temperature heat exchangers. In addition to the improved thermal conductivity, the mechanical strength of the ZrC / tungsten composite is also higher than that of nickel alloys. The mechanical properties are not affected by temperatures of up to 800 ° C, even if the material has previously been subjected to heating, e.g. for cooling cycles between room temperature and 800 °C. In contrast, iron alloys, e.g. stainless steels, and nickel alloys loose at least 80% of their strength.

(Photo: Wikipedia)