Posted on

Bioenergy

Bioenergy is renewable energy derived from biomass. Biomass is organic material that was produced by living organisms. Each type of biomass was once converted into chemical energy using sunlight and then stored.

Since biomass is stored chemical energy, it can be burned directly. Biofuels can be produced from biomass in solid, liquid or gaseous form. Bio-electricity is both the direct use of biomass and the conversion of biomass into oils, biogas or other fuels for power generation.

Wood that is burned to make fire is another example of biomass. Wood is the world’s most widely used biofuel. Ethanol is also a popular biofuel. It is produced by fermentation of sugars. The process is the same as in alcoholic fermentation for the production of beer or wine. Usually, yeasts carry out fermentation, but other microorganisms, such as clostridia are capable of producing alcohols and other volatile organics as well.

While combustion of biomass produces about the same amount of CO2 as fossil fuels, biofuels are produced in the present day and their combustion does not release additional CO2 into the atmosphere. Biofuels can also be used as fuel additives to reduce carbon emissions from gasoline prices. But there are also vehicles that are powered mainly by biofuels. Bioethanol is widespread in the United States and Brazil, while more biodiesel is produced in the European Union.

Posted on

Nanomaterials in bio-electrical systems could improve performance

Since Professor Potter’s discovery of the ability of microbes to turn organic molecules into electricity using microbial fuel cells (MFC) more than a century ago (Potter MC, 1911, Proc Roy Soc Lond Ser B 84:260–276), much research was done to improve the performance. Unfortunately, this did not not produce an economically viable technology. MFCs never made it out of the professors’ class rooms. This may change now that we have advanced nanomaterials available.

The testing of nanomaterials in bio-electrical systems has experienced a Cambrian explosion. The focus usually was on electrodes, membranes, and in the electrolyte with infinite possibilities to find high performing composites. The benefits of such materials include a large surface area, cost savings, and scalability. All are required to successfully commercialize bio-electrical systems. The large-scale commercial application could be wastewater treatment. In our recently published literature survey we discovered that there is no common benchmark for performance, as it is usual in photovoltaics or for batteries. To normalize our findings, we used dollar per peak power capacity as ($/Wp) as it is standard in photovoltaics. The median cost for air cathodes of MFCs is $4,700 /Wp ($2,800 /m²). Platinum on carbon (Pt/C) and carbon nanofibers are the best performing materials with $500 /Wp (Pt/C $2,800 /m²; nanofibers $2,000 /m²).

We found that carbon-based nanomaterials often deliver performance comparable to Pt/C. While MFCs are still far away from being profitable, microbial electrolysis cells already are. With these new carbon-based nanomaterials, MFCs however, are moving closer to become an economic reality. Graphene and carbon nanotubes are promising materials when they are combined with minerals such as manganese or iron oxides. However, the price of graphene is still too expensive to let MFCs become an economic reality in wastewater treatment. The costs of microbial electrolysis, however, are already so low that it is a serious alternative to traditional wastewater treatment as we show in the featured image above. For high strength wastewater, a treatment plant can in fact turn into a power plant with excess power being offered to surrounding neighborhoods. Reducing the costs of microbial electrolysis is accomplished by using a combination of cheap steel and graphite.

Relationship between MEC reactor capacity and total electrode cost including anode and cathode. Errors are standard deviations of four different tubular reactor designs. Anodes are graphite granules and cathodes are steel pipes

 

Graphite, in turn, is the precursor of graphene, a promising material for MFC electrodes. When graphite flakes are reduced to a few graphene layers, some of the most technologically important properties of the material are greatly improved. These include the overall surface and the elasticity. Graphene is therefore a very thin graphite. Many manufacturers of graphene use this to sell a material that is really just cheap graphite. In the journal Advanced Materials Kauling and colleagues published a systematic study of graphene from sixty manufacturers and find that many high-priced graphene products consist mainly of graphite powder. The study found that less than 10% of the material in most products was graphene. None of the tested products contained more than 50% graphene. Many were heavily contaminated, most likely with chemicals used in the production process. This can often lead to a material having catalytic properties which would not have been observed without contamination, as reported by Wang and Pumera.

There are many methods of producing graphene. One of the simplest is the deposition on a metallic surface, as we describe it in our latest publication:

Single-layer graphene (SLG) and multilayer graphene (MLG) are synthesized by chemical vapor deposition (CVD) from a carbon precursor on catalytic metal surfaces. In a surface-mediated CVD process, the carbon precursor, e.g. Isopropyl alcohol (IPA) is decomposed on the metal surface, e.g. Cu or Ni. In order to control the number of graphene layers formed, the solubility of the carbon precursor on the metal catalyst surface must be taken into account. Due to the low solubility of the precursor in Cu, SLG can be formed. It is difficult to grow SLG on the surface of a metal with a high affinity for the precursor.

Protocol:
The protocol is a cheap, safe and simple method for the synthesis of MLG films by CVD in 30-45 minutes in a chemistry lab. A nickel foil is submersed in acetic acid for etching and then transferred to an airtight quartz tube. The same protects the system from ambient oxygen and water vapor. Nitrogen gas is bubbled through the IPA and the resulting IPA saturated gas is passed through the closed system. The exhaust gases are washed in a beaker with a water or a gas wash bottle. The stream is purged for 5 minutes at a rate of about 50 cc/min. As soon as the flame reaches a Meker burner 575-625 °C, it is positioned under the nickel foil, so that sufficient energy for the formation of graphene is available. The flame is extinguished after 5-10 minutes to stop the reaction and to cool the system for 5 minutes. The graphene-coated Ni foil is obtained.

But how thin must graphite flakes be to behave as graphene? A common idea supported by the International Organization for Standardization (ISO) is that flakes with more than ten graphene layers consist essentially of graphite. Thermodynamics say that each atomic layer in a flake with ten or fewer layers at room temperature behaves as a single graphene crystal. In addition, the stiffness of the graphite flakes increases with the layer thickness, which means that thin graphene flakes are orders of magnitude more elastic than thicker graphite flakes.

Unfortunately, to actually use graphene in bioelectric reactors, you still have to make it yourself. The ingredients can be found in our DIY Shop.

 
Posted on

Better heat exchangers for concentrated solar power

Solar thermal systems are a good example of the particle-wave dualism expressed in Planck’s constant h: E = hf. Where h is the Planck constant, f is the frequency of the light and E is the resulting energy. Thus, the higher the frequency of the light, the higher the amount of energy. Solar thermal metal collectors transform the energy of high-frequency light by generating them to an abundance of low-frequencies through Compton shifts. Glass or ceramic coatings with high visible and UV transmittance absorb the low frequency light generated by the metal because they effectively absorb infrared light (so-called heat blockers). The efficiency of the solar thermal system improves significantly with increasing size, which is also the biggest advantage of such systems compared to photovoltaic generators. One disadvantage, however, is the downstream transformation of heat into electricity with the help of heat exchangers and turbines − a problem not only in solar thermal systems.

To provide the hot gas (supercritical CO2) to the turbines, heat exchangers are necessary. These heat exchangers transfer the heat energy generated by a power plant to the working fluid in a heat engine (usually a steam turbine) that converts the heat into mechanical energy. Then, the mechanical energy is used to generate electricity. These heat exchangers are operated at ~800 Kelvin and could be more efficient if the temperature were at >1,000 Kelvin. The entire process of converting heat into electricity is called a power cycle and is a critical process in power generation by solar thermal plants. Obviously, heat exchangers are pivotal elements in this process.

Ceramics are a great material material for heat exchanger because they can withstand extreme temperature fluctuations. However, unlike metals, ceramics are not easy to shape. Relatively coarse shapes, in turn, are made quickly and easily. In contrast, metals can be easily formed and have a high mechanical strength. Metals and ceramics have been valued for centuries for their distinctive properties. For example, bronze and iron have good impact resistance and are so malleable that they have been made into complex shapes such as weapons and locks. Ceramics, like those used to make pottery, have been formed into simpler shapes. Their resistance to heat and corrosion made ceramics a valued material. A new composite of metal and ceramic (a so-called cermet) combines these properties in amazing ways. A research group led by Mario Caccia reported now in the prestigious journal Nature about a cermet with properties that makes it usable for heat exchangers in solar thermal systems.

The history of such composites goes back to the middle of the 20th century. The advent of jet engines has created a need for materials with high resistance to heat and oxidation. On top of that, they had to deal with rapid temperature changes. Their excellent mechanical strength, which often surpassed that of existing metals, was highly appreciated by the newly created aerospace industry. Not surprisingly, the US Air Force funded more research into the production of cermets. Cermets have since been developed for multiple applications, but in most cases have been used for small parts or surfaces. The newly released composite withstands extreme temperatures, high pressures and rapid temperature changes. It could increase the efficiency of heat exchangers in solar thermal systems by 20%.

To produce the composite, the authors first produced a precursor, which was subject to further processing, comparable to potting the unfired version of a clay pot. The authors compacted tungsten carbide powder into the approximate shape of the desired article (the heat exchanger) and heated it at 1,400 °C for 2 minutes to bond the parts together. They then further processed this porous preform to produce the desired final shape.

Next, the authors heated the preform in a chemically reducing atmosphere (a mixture of 4% hydrogen in argon) at 1,100 °C. At the same temperature, they immersed the preform in a tank of liquid zirconium and copper (Zr2Cu). Finally, the preform was removed by heating to 1,350 °C. In this process, the zirconium displaces the tungsten from the tungsten carbide, producing zirconium carbide (ZrC) as well as tungsten and copper. The liquid copper is displaced from the ZrC matrix as the material solidifies. The final object consists of ~58% ZrC ceramic and ~36% tungsten metal with small amounts of tungsten carbide and copper. The beauty of the method is that the porous preform is converted into a non-porous ZrC / tungsten composite of the same dimensions. The total volume change is about 1-2%.

The elegant manufacturing process is complemented by the robustness of the final product. At 800 °C, the ZrC / tungsten cermet conducts heat 2 to 3 times better than nickel based iron alloys. Such alloys are currently used in high-temperature heat exchangers. In addition to the improved thermal conductivity, the mechanical strength of the ZrC / tungsten composite is also higher than that of nickel alloys. The mechanical properties are not affected by temperatures of up to 800 ° C, even if the material has previously been subjected to heating, e.g. for cooling cycles between room temperature and 800 °C. In contrast, iron alloys, e.g. stainless steels, and nickel alloys loose at least 80% of their strength.

(Photo: Wikipedia)

Posted on

A Durable Aluminum-Air-Battery

Non-rechargeable batteries, which depend on a reaction between aluminum and oxygen, can store significantly more energy than conventional lithium-ion batteries. The biggest limitation of such aluminum-air batteries is their short shelf life. An improved battery design could help eliminate this limitation. Aluminum and air batteries are based on the property of aluminum to corrode, which is also their weak spot:

4 Al + 3 O2 + 6H2O → 4 Al (OH)3

While an aluminum-air battery is not used, its electrodes corrode causing unwanted discharge. This self-discharge drastically shortens the shelf life of the battery. Brandon Hopkins, of the Massachusetts Institute of Technology in Cambridge, and his colleagues developed an aluminum-air battery that uses a conventional electrolyte during operation. When stored, however, the electrolyte is replaced by oil. Their article was recently published in the journal Science.

The new battery reaches a storage capacity of almost 900 Wh / kg. This makes the prototype comparable to other aluminum-air batteries. In contrast, the new corrosion protection extends the storage time 10,000-fold. The authors suggest that such a battery could be used in long-range drones and grid-independent power generation. At Frontis Energy, we believe that batteries with high storage capacity and durability can be used almost anywhere, for example for sensors and other applications.

(Photo: George Hodan)

Posted on

White Christmas, going … gone

In Germany, we seem to remember White Christmas from fairy tales only. Now there is also scientific evidence that winter snow cover in Europe is thinning. Thanks to global warming, the snow cover decrease accelerated

The research group behind Dr. Fontrodona Bach of the Royal Netherlands Meteorological Institute in De Bilt analyzed snow cover and climate data from six decades from thousands of weather stations across Europe. The researchers found that the mean snow depth, with the exception of some local extremely cold spots, has been decreasing since 1951 at 12% per decade. The researchers recently published their research results in the journal Geophysical Research Letters. The amount of “extreme” snow cover affecting local infrastructure has declined more slowly.

The observed decline, which accelerated after the 80s, is the result of a combination of rising temperatures and the impact of climate change on precipitation. The decreasing snow cover can reduce the availability of fresh water during the spring melt, the authors noted.

(Photo: Doris Wulf)

Posted on

An inexpensive scalable multi-channel potentiostat

As our preferred reader, you know already what we work on Power-to-Gas to combat Global Warming. We think that giving CO2 a value will incentivize its recycling and recycling it into fuel turns it into a commodity that everyone needs. While the price of CO2 from air is still too high to convert it into combustion fuel, working on the other end (the CO2 conversion) will help to accommodate such high prices. We have now published an research paper that shows how how to reduce the costs of electronic equipment needed for CO2 conversion. For Power-to-Gas as well es for electrosynthesis of liquid fuels, it is necessary to poise an electrochemical potential. So far, only electronic potentiostats could do that. We have developed a software solution that can control cheap off-the-shelf hardware to accomplish the same goal. Since the software controls µA as well as MA, it is freely scalable. By stacking cheap power supplies, it can also run unlimited channels.

Frontcell© potentiostat setup with two channels. From left to right: digital multimeter (in the back), relay board (in front), two H-type electrolysis cells, power supply, control computer.

We tested the software at a typical experimental Power-to-Gas setup at −800 mV and found that the recorded potential was stable over 10 days. The small electrochemical cells could also be replaced by a larger 7 liter reactor treating real wastewater. The potential was stable as well.

The potential of −800 mV controlled by the Frontcell© potentiostat was stable for 200 ml electrolysis cells (left) as well as for a larger 7 l reactor (right).

As instrument control of mass products also makes the chemical processes involved cheap, microbial electrolysis of wastewater becomes economically feasible. Removal of wastewater organics usually occurs at positive electrochemical potentials. Indeed, the software also stabilizes such potentials at +300 mV.

The Frontcell© potentiostat stabilized a 200 ml electrolysis cells at +300 mV for ten days.

The potentiostat is currently available as command line version. We are currently accepting pre-orders at a 50% discount for the commercial version that comes with a graphical user interface and remote control using an internet browser.

Posted on

Ammonia energy storage #1

The ancient, arid landscapes of Australia are not only fertile soil for huge forests and arable land. The sun shines more than in any other country. Strong winds hit the south and west coast. All in all, Australia has a renewable energy capacity of 25 terawatts, one of the highest in the world and about four times higher than the world’s installed power generation capacity. The low population density allows only little energy storage and electricity export is difficult due to the isolated location.

So far, we thought the cheapest way to store large amounts of energy was power-to-gas. But there is another way to produce carbon-free fuel: ammonia. Nitrogen gas and water are enough to make the gas. The conversion of renewable electricity into the high-energy gas, which can also be easily cooled and converted into a liquid fuel, produces a formidable carrier for hydrogen. Either ammonia or hydrogen can be used in fuel cells.

The volumetric energy density of ammonia is almost twice as high than that of liquid hydrogen. At the same time ammonia can be transported and stored easier and faster. Researchers around the world are pursuing the same vision of an “ammonia economy.” In Australia, which has long been exporting coal and natural gas, this is particularly important. This year, Australia’s Renewable Energy Agency is providing 20 million Australian dollars in funding.

Last year, an international consortium announced plans to build a $10 billion combined wind and solar plant. Although most of the 9 terawatts in the project would go through a submarine cable, part of this energy could be used to produce ammonia for long-haul transport. The process could replace the Haber-Bosch process.

Such an ammonia factories are cities of pipes and tanks and are usually situated where natural gas is available. In the Western Australian Pilbara Desert, where ferruginous rocks and the ocean meet, there is such an ammonia city. It is one of the largest and most modern ammonia plants in the world. But at the core, it’s still the same steel reactors that work after the 100 years-old ammonia recipe.

By 1909, nitrogen-fixing bacteria produced most of the ammonia on Earth. In the same year, the German scientist Fritz Haber discovered a reaction that could split the strong chemical bond of the nitrogen, (N2) with the aid of iron catalysts (magnetite) and subsequently bond the atoms with hydrogen to form ammonia. In the large, narrow steel reactors, the reaction produces 250 times the atmospheric pressure. The process was first industrialized by the German chemist Carl Bosch at BASF. It has become more efficient over time. About 60% of the introduced energy is stored in the ammonia bonds. Today, a single plant produces and delivers up to 1 million tons of ammonia per year.

Most of it is used as fertilizer. Plants use nitrogen, which is used to build up proteins and DNA, and ammonia delivers it in a bioavailable form. It is estimated that at least half of the nitrogen in the human body is synthetic ammonia.

Haber-Bosch led to a green revolution, but the process is anything but green. It requires hydrogen gas (H2), which is obtained from pressurized, heated steam from natural gas or coal. Carbon dioxide (CO2) remains behind and accounts for about half of the emissions. The second source material, N2, is recovered from the air. But the pressure needed to fuse hydrogen and nitrogen in the reactors is energy intensive, which in turn means more CO2. The emissions add up: global ammonia production consumes about 2% of energy and produces 1% of our CO2 emissions.

Our microbial electrolysis reactors convert the ammonia directly into methane gas − without the detour via hydrogen. The patent pending process is particularly suitable for removing ammonia from wastewater. Microbes living in wastewater directly oxidize the ammonia dissolved in ammonia and feed the released electrons into an electric circuit. The electricity can be collected directly, but it is more economical to produce methane gas from CO2. Using our technology, part of the CO2 is returned to the carbon cycle and contaminated wastewater is purified:

NH3 + CO2 → N2 + CH4

 

Posted on

Fuel Cells Have the Potential to Become the Best Green Energy Alternative to Fossil Fuels

Global warming is – as the name already suggests – a global concern. It causes problems such as sea level rise, more frequent and more severe strms, and longer droughts. Thus, it global warming concerns all of us. To best fight global warming, adopting green energy in your life is the best viable solution.

Green energy is getting more attention today. It helps to reduce our carbon footprint and thus curbing the global warming. Increasing carbon footprint is the main cause for rising temperatures. Moreover, investing in green energy is also a business case generating steady revenue stream without marginal costs. Hence, many governments promote the use of green energy by providing subsidies and teaching people its benefits in their life.

There are many ways green energy is produced, for example, solar energy, wind energy, the energy produced through bio-waste. Fuel cells are a major breakthrough in this regard. They have impacted the production green energy in many ways. They are also convenient to use. As their fuel (hydrogen, methane …) is produced by using electrical energy, they can use a wide range of green sources to produce energy.

What Are Fuel Cells?

A fuel cells is a device that converts chemical energy into electrical energy. The process combines hydrogen and oxygen to produce water& electricity as main products. Fuel cells are somewhat similar batteries. The main difference is that a fuel is supplied without a charge-discharge cycle. Like batteries, fuel cells are portable and can be used with a variety of fuels like ethanol, methanol, methane, and more.

There are different types of fuel cells. But the most popular ones are hydrogen fuel cells that provide a wide range with only some of advantages as follows:

  • The cells are more efficient than conventional methods used to produce energy.
  • They are quiet – unlike, for example combustion engines or turbines
  • Fuel cells eliminate pollution by using hydrogen instead of burning of fossil fuels.
  • Fuel cells have a longer lifespan than batteries because fresh fuel is supplied constantly
  • They use chemical fuels that can be recycled or produced using renewable energy which makes them environmentally friendly.
  • Hydrogen fuel cells are grid-independent and can be used anywhere.

How Do Fuel Cells Work?

A fuel cell produces power by transforming chemical energy into electrical energy in reduction-oxidation processes, much like batteries do. However, unlike batteries, they produce electricity from external supplies of fuel to the anode and oxidants to the cathode. Fuel cells are capable of producing energy as long as the fuel required to produce energy is supplied. Main components of fuel cells are electrolytes that allow for ion exchange. They aid the electro chemical reaction.

Hydrogen, ethanol, methanol, and methane are used as a source of energy. Methane, which is extracted from the subsurface, can be transformed into hydrogen rich stream. With an abundance of the hydrogen in nature, fuel cells seem to be the most viable technology that helps to produce green energy at large scale and at the most affordable cost.

Fuel cells are all set to become the most reliable source of green energy in the near future. They are fuel efficient, so businesses can make the best use of them. At Frontis Energy, we offer a unique selection that helps you build and improve your own fuel cells – be it for research and development or for production.

Posted on

How do the fuel cells work as an effective renewable power?

Fuel cells are the devices that convert chemical energy directly into electrical energy. The process combines hydrogen and oxygen produce water& electricity as main products. Fuel cells are similar to batteries in that they produce electricity but also different in that a fuel is supplied without a charge-discharge cycle. Like batteries, they are portable and developed by technological experts. The cells can be used with a variety of fuels like ethanol, methanol, methane, and more.

Here are the advantages of hydrogen fuel cells –

  1. The cells are efficient when compared to the conventional forms of producing energy.
  2. Hydrogen fuel cells operate silently.
  3. Fuel cells eliminate pollution by switching from burning of fossil fuels to hydrogen.
  4. Fuel cells last longer than batteries because they use chemical fuels to produce energy.
  5. Hydrogen fuel cells are grid-independent and can be used anywhere.

Components of Fuel Cells. A fuel cell converts chemical energy into electrical energy, much like a battery. But unlike batteries, they produce electricity from external supplies of fuels to the anode and oxidants to the cathode. Fuel cells can operate virtually continuously as long as the necessary fuel is supplied. Electrolytes are the major components of the fuel cells and keep that allow ion exchange. Fuel cells also have electrodes that are catalysts of the electrical chemical reaction.

Fuel for Fuel Cells. Fuel cells can operate using a variety of fuels like hydrogen, ethanol, methanol, and methane. Fossil fuels like methane are extracted from underground and converted into a hydrogen rich stream. There is also a huge abundant amount of hydrogen in water which can be used for the hydrogen power supply .For higher voltages, fuel cells can be stacked. Fuel cells can power anything from microchips to buses, boats, and buildings.

Fuel Cell Efficiency. The fuel cells are much more efficient than conventional power generation. This is because conventional power is generated be converting chemical energy into heat, mechanical energy and lastly into electrical energy. Fuel cells are converting energy directly into electrical energy and are much more efficient.

Fuels cells are a promising technology and already a source of electricity for buildings and vehicles. The devices operate best with pure hydrogen. In contrast, fossil fuel reserves are in limited and the energy future of the world needs to include several renewable alternatives to our declining resources. Hydrogen is the most abundant element present in the universe and serves as the fuel for nuclear fusion in the sun. Due to this abundance, hydrogen fuel cells are the best green energy source.

Posted on

Modern Day Fuel Cells – A Commercially Viable Green Alternative

Today’s companies are developing innovative techniques to use green energy such as fuel cells. There are different types of fuel cells under development, each with its own advantages, limitations, and potential applications. The classification is determined by the kind of electro chemical reactions taking place in the cell, the required kind of catalyst, the temperature range in which the cells operate, the required fuel, and other different factors.

Frontis Energy is an industry expert in fuel cells and electrolysis storage with more than 20 years of experience. We develop innovative environmental technology products and services. Our specialty is bio-fuels and wastewater with innovative solutions at competitive prices.

Fuel cells are clean, reliable, and portable

A fuel cell is a device that uses a source of fuel like hydrogen and an oxidant for creating electricity through electro chemical processes. It converts chemical energy into electrical energy like batteries found under the hoods of automobiles or in flashlights. The basic build-up is very simple. There are in principle two types of configurations which refer to the electrolyte and the two electrodes.

Many combinations of fuels and oxidants are possible in fuel cells. The fuel can be hydrogen, diesel, methanol, natural, etc., and the oxidants can be air, chlorine, or chlorine dioxide, and so forth. But most of today’s fuel cells are using hydrogen. The hydrogen used in fuel cells can be produced by a variety of fuels, including natural gas. A fuel cell splits hydrogen into electrons and protons. Fuel cells have several advantages over other common forms of power. They are cleaner, more efficient, and quiet.

There is no doubt that fuel cells are among the most efficient ways of green energy today. They are a decentralized and Eco-friendly alternative to conventional energy production. As the cost of centralized power rises, the cost of decentralized power continues to fall. Some power professionals believe the days of centralized power are numbered. Today, fuel cells are the best device to convert chemical energy into electrical energy.